您的当前位置:首页正文

运用密度泛函活性理论的信息论方法研究苯并富烯衍生物的芳香性

来源:爱go旅游网
物州 化学学报 Acta Ph ’s.一Chim.Sin.2018,34(6),639—649 639 [Article] doi:10.3866/PKU.WHXB20l 7l0231 Il,H 饵 whxb.pku.edu.CII Aromaticity Study of Benzene-Fused Fulvene Derivatives Using the Information-Theoretic Approach in Density Functional Reactivity Theory Yu Donghai1,RONG Chunying1·,LU Tian2,DE PROFT Frank3,LIU Shubin4, ,Key Laboratory ot"Chemical Biology and Traditional Chinese Medicine Research fMinistry ol、Education ofChina).College 0r Chemistry and Cheroical Engineering.Hunarl NOrtIlal University,Changsha 4 1 008 1 P_R.(、hina. Beiiling Kein Research Center for Natural Sciences,Beiiin l 00022 P R.China. 、Research Group orGenera】Chemist ̄。v(ALGC).Vrije Universiteit Brussel(VUB),Pleinlaan 2 l(150 Brussels,Belgiun1. 0 Research Computing Center,University ofNorth Carolina.Chapel HⅢ.NC 27599—3420,USA. Abstract: Although a Iarge variety of aromatic systems have been unveiled in the literature,justifying their origin of stability and understanding their nature of aromaticity is still an unaccomplished task.In this work.using tools recently developed by us within the density functionaI reactivity theow framework. where we employ simple density functionals to quantify molecular structural — and reactivity properties.we examine the aromaticity concept fr0m a diferent perspective.Using six quantities frOm the information—theoretic approach. namely.1he Shannon entropy,Fisher jnformation.Ghosh—Berkowitz—Parr entropy,Onicescu information energy,information gain,and relative Renyi entropy,and four aromaticity descriptors,namely,the aromatic stabilization energy(ASE)index,the harmonic oscillator modeI of aromaticity(HOMA)index,lhe aromatic fluctuation(FLU)index,and the nucleus—independent chemical shift (NlCS)index.we systematically examined the correlations between substituted fulvene derivatives fused with one,two, and th ree benzene rings.Among the 1 4 benzofulvene derivatives studied in this work.there were seven singIe—fused.four double.fused.and th ree triple—fused benzofulvene derivatives.Our results show thal the aromaticity indexes are often welI correlated with one another The same is true for information—theoretic quantities.Moreover.these correlations are valid across alI series of benzofulvene derivatives with diferent ring structures.The cross correlations between information—theoretic quantities and aromaticity indexes were usually strong.However,two completely opposite patterns were obsemed:as a consequence.these correlations are not valid across all series of benzOfulvene derivatives.The nature of these correlations depends on the nature of the ring structure.The two groups of systems,each obeying the same cross—correlation paRerns.have a total number of 4n 4-2 and 4n丌electrons.respectively.which are in agreement with H0ckel s rule of aromaticity and antiaromaticity.Compared with the results obtained for systems without a benzene fused ring,the correlation patterns of these quantities were always found to be the same,both with and without fused benzene rings This suggests that.despite benzene’s aromaticity.its fusion with a fulvene moiety does nol modify the aromaticity and antiaromaticity of the fulvene ring These results confirm that the fusion of benzene rings with a fulvene moiety has no influence on the aromatic nature of the fulvene moiety.Thus.the aromaticity and antiaromaticity of benzene—fused fulvene derivatives are solely determined by the fulvene moiety.These results should provide a new understanding of the oriqin and nature of aromaticity and antiaromaticity. Receixed:August 3I !()I 7:Revised:October1 8 20I 7:Accepted:October18 20I7:Published onIille:October 23,2()I 7 ‘Con’esponding authors Email:r(】ngchunyjng@aliyLm COIll;Te1. 86—73 :l-88872533(C Y R).Email:fdeprof(a)vub ac be;Tel:1 32(0)262933 1 0 D I】l1, EmaiI:shubin(a emaiI I.illC edu:Tel:+1.9I9—962—4032 rS B L¨1 CYR and SBL acknowledge support from the NationaI Natural Science I:oundation of、Chi rla f21 503076l and}Iuuan Provincia1 Natural Scicncc l ̄'otlndatioll of China(2{)1 7,1.J32()1)I)HY acknowledges the support l"tom the tturlall ProvinciaI lnnovatiou Foundatjon lbr Postgraduates(CX2I1l 7B1 79) and【’hina Scholarship Comlcil(20I 7067200I 5).FDP acknowledges the Research Foundation Flanders(FWO) r COlltinUOklS support to his group al1【】the Vriie Universitcit Brussel for support,amollg other through a Strategic Research Program awarded to his group Finally.FDP acknowledges the Francqui foundation fbr a position as Francqui Research Professor Editoria1 olt5ce of Aeta Physico—Chimica Sinica 640 Acta Physico—Chimica Sinica Vo1.34 Key Words:Aromaticity;Antiaromaticity;Benzofulvene;Information—theoretic approach;Density functiona reactivity theory 运用密度泛函活性理论的信息论方法研究苯并富烯衍生物的芳香性 余东海’,荣春英’,,卢天2,DE PROFT Frank3,,刘述斌4, i湖南师范大学化学化工学院教育部化学生物和中药研究重点实验室,长沙410081 2北京科音自然科学研究中心,北京100022 3布鲁塞尔自由大学普通化学研究组,布鲁塞尔普莱园赖2号,1050,比利时 北卡罗莱纳大学大学教堂山校区研究计算中心,北卡27599.3420,美国 摘要:文献中已有越来越多的芳香性体系被发现,同时也有越来越多的芳香性指标被提出来,但是如何解释芳香化合物 稳定性的起源以及理解芳香性的本质仍然是当今理论化学中一个悬而未决的难题。运用我们新近提出的密度泛函活性理 论信息论方法,不久前我们曾对一系列富烯衍生物进行了系统研究并得到了一个全新的认识。本文进一步探讨苯并富烯 衍生物的芳香性行为,目的在于考察一个或多个苯环与富烯连接之后其芳香性发生变化的情况。运用香农熵,费舍尔信 息,Ghosh.Berkowitz.Parr熵,Onicescu信息能,信息增益,以及相对R ̄nyi熵六个信息量,和四种芳香指标,ASE, HOMA,FLU ̄IINICS,我们系统地研究了信息量和芳香性指标在单、双、三苯并富烯衍生物中的相关性。我们发现,不 管是否有苯环与富烯相连,芳香指标和信息量的交叉相关性都是一样的。这表明,虽然苯环本身具有芳香性,但苯环与 富烯相连并不能改变富烯的芳香性与反芳香性本质。苯并富烯衍生物与富烯衍生物的芳香性和反芳香性一致。苯并富烯 衍生物的芳香性和反芳香性完全取决于富烯本身的芳香性和反芳香性。这些结果为认识和理解复杂体系芳香性和反芳香 性起源和本质将提供有益的启示。 关键词:芳香性:反芳香性;苯并富烯;信息论方法;密度泛函活性理论 中图分类号:O641 1 Introduction indepcndent chemical shitfs),etc.1,28 36 These descriptors are only indicative of one or few facets of the complicated nature of romatiacity.No single index is able to account for all kinds Aromaticity is one of the most widely used chemical concepts 1.It refers to the extra stability and subsided reactivity of a planar cyclic structure compared to other conformations of the same molecular formula 2-5.It is originated from the additional delocalization of electrons,either瓦 or ,leading of aromaticity mentioned above 8,37. Recently,we tackled this matter from a completely different perspective 38.Using the quantities we newly developed within to the redistribution ofthe electron density ofthe entire system 6-9. the framework of density functional reactivity theory(DFRT)39,40, with substituted fulvene derivatives as the model system,we Despite of its general acceptance and widespread use,there are still lots of controversies about aromaticity and its counterpart. antiaromaticity,in the literature 9-12.This is mainly caused by the fact that there are many different categories of aromaticity discovered in the literature,such as Hfickel,M6bius,excited state,spherical,cubic,octahedral,metallic,chelated,and so compared changing pattensr of information—theoretic(IT) quantities such as Shannon entropy,Fisher information, Ghosh—Berkowitz·Parr entropy,information gain,Onicescu information energy,and relative R6nyi entropy on the ring carbon atoms of these systems with four representative o13 .And at the same time there are dozens of aromaticity romatiacity indexes,FLU,HOMA,ASE,and NICS 38.Our results unveiled two opposite patterns for cross correlations between IT quantities and aromaticity indexes for different indexes proposed,whose acronyms include ASE/ISE (aromatic/isomeric stabilization energy), RE(resonance energy),Ai(Julg concept),HOMA(harmonic oscillator model ring structures, and these ring—structure—dependent correlations are in good agreement with HOckel’s 4n+2 rule of aromaticity and 4n rule of antiaromaticity l,42. In this work,we continue the study using a new model system.We fuse one or more benzene rings.which are known to be aromatic.with fulvene derivatives.The purpose of the present study is to examine whether or not the changing patterns of cross correlations discovered previously are stil1 in of aromaticity),Jug index,Bird index,PDI(para—related delocalization index).FLU(aromatic fluctuation index1,MCI (multicenter indices), ng(multicenter index),,NG(normalized 吨),/yB(normalized MCI),ELF (electron localization function),ATI(average two—center indices),PLR(para linear response index),AICD(anisotropy of the induced current density),RRCS(density of ring critical point),NICS(nucleus No.6 doi:l 0.3 866/PKU.WHXB20 1 7 1 023 1 641 place.We are also interested to see if the aromaticity of fused benzene rings is impacted in any manner by the fulvene (A,B)=4∑ Si,j(A)Si,j(B),where Sij(A)is the overlap ofthe molecular orbitals and,within the basin of atom A.The smaller the FLU value,the stronger the aromaticity 35. The last one employed in our study is the nucleus. derivatives.Results obtained from this study should provide urtfher understanding about the nature and origin of aromaticity and antiaromaticity for the systems studied 10,19,43,44. independent chemical shit(fNICS)derived from the e bct of aromatic ring current.It is found that a diatropic(diamagnetic) 2 TheoreticaI framework The origina1 definition of aromaticity features the extra ring current is associated with aromaticity,whereas a paratropic rparamagnetic)ring current sinalgs antiaromaticity.111is difference in ring currents generates noticeable differences in NMR chemical shifts.and thus can be used to quantify stability of a plnaar cyclic structure with a conjugated system of 4,2+2 electrons 41.To quantify aromaticity,a number of descriptors have been proposed using diferent properties as the consequences of aromaticity.We select four representative descriptors from the viewpoint of the energetics(ASE) , 一, electron delocalization(FLU)6,35,geometric(HOMA)33 and magnetic(NICS)criteria 45,in this sutdy.ASE(aromatic stabilization energies)is an energetics descriptor defined as the total energy difference of an isodesmic or homodesmotic reaction or isomerization between an aromatic structure and its other structures with the S8iTIe chemical formula.Take benzene or toluene as an example,the simplest isodesmic, homodesmotic,and isomerization reactions representing ASE are.respectively ,5,46,47. 3H2C=CHE+3H3C—CH3==>C6H6+6CH4 f1) 3cis—H2C=CH.CH=CH2==>C6H6+3HEC=CHE (2) A positive value of ASE denotes that benzene 1s more stable than its reference,ethylene or 1,3-butadiene,and thus the existence of aromaticity should be in place,whereas a negative ASE value suggests that the system is of antiaromatic nature 48. The HOMA(harmonic oscillator model of aromaticity) index is a geometrical measurement of the equalization of chemical bonds on an aromatic ring.Its definition is the following HOMA=卜 ∑(‰一Ri)。=卜[a(Ropt-Ra ) + ∑(尼 一Ri) ] f4) ,z 胛 、 where/,/is the bond number ofthe considered ring,Rav is the average bond length,Ri is hte bond length(all in A,1 A=0.1 nm),of each bond on the ring,and is the normalization constant(for C—C bonds =257.7、.A HoMA value of< 0,=0,and=1 represents antiraomatic,nonaromatic,and perfect aromatic systems,respectively 33,49 As an electronic descriptor,the aromatic fluctuation index (FLU)describes the fluctuation of electronic charge between adjacent atoms in a given ring.Its definition is as follows, Flu(A -- ̄B)B叫J] [ c (A,B) 2[Ⅳ(A)一 (A)】 :j1 (A B)>F1 (B ,an—1 FIufA—B)<F1u(B--*A), d aromaticity and antiaromaticity.In formulation.NICS at the chosenpointRNlocated at orontop ofa ring canbe described as the sum of partial chemical shitfs arising from occupied molecular orbitals (o 一昙击 ( 0 JI J笮  ㈤ / (6) where the first and second terms on the right—hand side of Eq. (1)are the diamagnetic and paramagnetic contributions, respectively,LN=FN× refers to the angular momentum operator.rN: —RN,and,is the electron position.A more negative value of o is an indication of a stronger aromaticity, whereas a positive o-value suggests that the ring is antiaromatic 4,45,50-53. Our recent tool to deal with aromaticity and antiaromaticity is the information-theoretic approach from DFRT 39 where we make use of simple density functionals to appreciate physiochemical properties like aromaticity,steric effect, electrophilicity, nucleophilicity, nad stereoselectivity. Quantities considered include Shannon entropy ss 54 =一f p(r)lnp(r)dr (7) Fisher information/e 54 = (8) Onicescu information energy of order 55 = p (9) Ghosh—Berkowitz—Par(GBP)entropy SGBP = 卜 information gain(also called Kullback-Leibler divergence) IG 39 ,G= )ln 出 …) and relative Rrnyi entropy Rr of order n 55, = -n[ d,1 In above formulas,p(r)is the electron density,Vp(r)is the density gradient,po(r)is the reference state density satislying the same normalization condition as p( , ,;P)is the kinetic 642 Acta Physico—Chimica Sinica V01.34 ==\ R 3M 4M一 4M 5M 6M+ 6M一 7M ben3M 一ben4M— _ben4M+ 一ben5M 一ben6M+ 一ben6M— 一ben7M 一R R R R diben 5M diben6M+_diben6M—_diben7M 一triben5M 一triben6M+一triben6M— _Scheme 1 Substituted fulvene and benzene fused fulvene derivatives examined in this work energy density,trF(r;P) is the Thomas—Fermi kinetic energy density,and c and k are constants.These different theoretical quantities have been previously applied to appreciate numerous molecular processes and physiochemical properties.In this work,we apply them to a new model system and examine their correlations with aromaticity descriptors like NICS,FLU, H0MA and ASE. same 1eve1 of theory.To perform the atomic partition.Becke’s uzzy atom approach 65,Bader’fs zero—flux atoms in.molecules criterion 66and Hirshfeld’s stockholder approach ore possible 67. ,As have been demonstrated earlier,these three approaches yield qualitatively similr resultas 55,68,69In this work,we .choose the Hirshfeld’s stockholder approach to partition atoms in molecules to obtain atomic values of above IT quantities on carbons atoms in the aromatic/antiaromatic ring.In this study. 3 Computational details Scheme 1 shows the model systems investigated in this we chose NICS(1),which means that the chosen point RN iS 1 A above the center of the aromatic ring 30,31.The N]CS(1、 aromaticity index was calculated using the procedure from the literature 7,14,56.The ASE index for fused fulvene derivatives for 3MR一7MR species in Scheme l was computed as the total energy difference from the isomerization reaction shown in Scheme 2 with the same 1evel of theory.The aromatic index 0f FLU and HOMA were calculated using MultiWFN 3.3.9 work.Tri(3MR),tetra(4MR+and 4MR—with one positive and negative charge,respectively),penta(5MR),hexa(6MR+ and 6MR一,with one positive and negative charge, respectively),and hepta一(7MR)fulvene derivatives were what we considered before,serving as the reference and thus the starting point of this work.The new systems are fused fulvene derivatives with one,two,and three benzene rings,shown in Scheme 1.denoted by bennM,diribennM, bennM,and tprogram at HF/6—3 11+G( level oftheory 61,70 ̄Units for ASE is kJ·mol一,for NICS is 10.and for IT quantities atomic units. respectively.with =3—7.The rings within the models are marked by A,B,C and D(see Scheme 1),with Ring B standing for the fulvene ring.111e substituting groups R was chosen from the following groups,R=H,CH3,CCH,CMe3, 4 Results and dIsCuSSiOn As illustrative examples.Table 1 shows the numerical results of three aromaticity descriptors,FLU,HOMA,and NICS(1), or tfhree benzene fused fulvene derivatives with 25 substituting groups.As can be seen from the table,same as what we have CN,C0NH2,COCH3,CF3,CH2,CC一,COO一,F,B(OH)2,OH, 0CH3,0,NH2,N02,NO,NMe2,NH一,NH;,NN ,and SiMe3 56,”.with the criterion that the optimized stmcmre observed in fulvene derivatives;fi1 these species could be both aromatic and ant aromatic,according to the definition of each should be planar.Model triben7M is not planar so it will not be considered here. All calculations were performed at the DFT . B3LYP/6—3 1 1 G(d,p、 一 level of theory using Gaussian 09 package version E01 62 with the tight SCF convergence criterion and ultrafine integration grids 63.A single—point requency calculation was follfowed to ensure that the final structure obtained has no imaginary frequency.The MultiWFN 3.3.9 program developed by one of the present authors was used to calculate all information—theoretic quantities introduced above with the check point file generated from the above Gaussian calculations as the input file 64.To obtain the electron density fur the isolated state, we employed the spherically.averaged electron density of the neu ̄al atom at the R一 R R Scheme 2 The isomerization reactions used to calculate the ASE index for singly fused benzofulvenes. No.6 doi:10.3866/PKU.WHXB20171023 1 643 TabIe Numerical results of FLU,HOMA,and NICS(1)for Ring B of ben_5M,diben_5M,and triben_ben as illustrative examples. of these aromaticity descriptors;(ii)aromaticity and antiaromaticity depend on the nature of the substituting group; be noticed:(i)These correlation patterns are the same as those of ulfvene derivatives;and(ii)these patterns are preserved with the changed number of fused benzene rings,with one benzene, to two,and two three fused benzene tings.These results suggest that no matter how many benzene tings are merged with the fulvene ring,the correlation pattem of aromaticity descriptors is always the same.The same tendency is true for IT quantities,as shown in Table 4 for ben 5M.diben 5M.and triben 5M systems as an example.from which the exactly same conclusions can be drawn. For cross-correlations between aromaticity indices and IT quantities,our previous results have shown that their patterns are dependent of the fulvene ring size.As shown in Table 5. this same conclusion is still valid for benzene fused fulvene derivatives.For example,we find that ben 5M and ben 6M— have opposite changing patterns between aromaticity indices nd IT quantiaties.In addition,this opposite change pattern persists with the increased number of used fbenzene rings.That is,from ben 5M,to diben 5M,and to triben 5M,the sign of the correlation coeficifent does not change.Again,these results indicate that the correlation pattern of benzene fused fulvene derivatives is dictated the substituted fulvenes. and(iii)diferent aromaticity descriptors often yield different conclusions on whether a species is aromatic or antiaromatic. Table 2 exhibits the average value of ring carbon atoms of eight information—theoretic quantities,Shannon entropy Ss, Fisher information/F,Ghost—Berkowitz—Parr entropY&BP, information gain/c,Onicescu information energy of orders 2 and 3,E2 and E3,and relative Rdnyi entropy of orders 2 and 3, r2 and Rr3.for Ring B of the diben 5M system as illustrative examples.Comparing with the data from our previous study for substiuted fultvene derivatives,we found that each of these IT quantities is slightly fluctuating around its characteristic (average)value,but,as will be shown below,it is the pattern of their fluctuation that wil1 reflect the nature of aromaticity and antiaromaticity of these systems. Following our previous work 38,69,71 76,Tables 3-5 display the correlation coe伍cients among the aromaticity and IT quantities studied in this work.Table 3 shows the inter-correlation between each pair of aromaticity descriptors or fRing B of nine benzene fused fulvene systems,from which we can see that the correlation pattem fi.e..positive and negative signs of the correlation coeficifent)is always the To visualize the above results.using the correlation between same.That is,FLU vs NICS(1)is positively correlated fwith a positive correlation coeficifent).whereas FLU vs HOMA and H0MA vs NICS(11 re anegatively correlated.Two points are to NICS(1)and SGBP as an example,Fig.1 exhibits the strong linear relationships on the fulvene ring of 0—3 benzene fused systems.Tl1e average value of all carbon atoms on the fulvene Acta Physico—Chimica Sinica V_o1.34 Table 2 Numerical values of information.theoretic quantities for Ring B of diben5M as illustrative examples· _Table 3 The correlation coeficifent R between aromaticity indexes FLU,HOMA,and NICS(1)for ing RB of a few benzene fused fulvene systems· ring was employed in the Figure 38,77.A dotted line is used in clear that the correlations are stronger on Ring A than Ring B, even though the qualitative trend iS evident.With the difference in that.the correlations in Fig.2 are for one of the fused the Figureto separate aromatic(N ̄cs0)<0)and antiaromatic (N ̄CS(1)>0)regions 30,31.As can be seen from the figure, there are two different categories of 1inear correlations,one benzene rings,not for the fulvene ring.Compared with their counterpart in Fig.1,it becomes apparent that the pattern of changes with respect to the change of substituting groups with a positive slope and the other with a negative slope,and these patterns do not change with respect to the number of the fused benzenes 78,79.Notice that,as indicated earlier,the total number of electrons in these two categories of correlations re in consensus wiath Hfickel’S 4n+2 rule ofaromaticity and 4n rule ofantiaromaticity 41. Fig.2 displays the same correlation pattems between SGBP between NICS(1)and SoBP is the same,confirming what we concluded earlier that it iS the fulvene ring that dictates the changing pattern of the benzofulvene systems 38.We know that benzene itself iS aromatic,but when fused with fulvene, sometime it becomes antiaromatic,according to the criterion of nd aNICS(1)of ring A for three benzofulvenes as Fig.1.It is NICS(1)29 31,45. NO.6 doi:1 0.3 866/PKU.WHXB20 1 7 1 023 1 645 Table 5 The correlation coeficifents between aromatic indexes and IT quantiites for Ring B of a few benzene fused fulvene derivatives. 646 Acta Physico—Chimica Sinica Vl01.34 3g 6 § mcs(11=0 。 。 。{ 3 Mc5r工J 0 a㈣af ma Nicso]。 Fig.I Strong linear correlations between SGar and NICS(t)for(a)substituted folvene derivatives and for Ring B of(b)singly fused benzo fulvenes;(c)doubly fused benzofuh'enes;and(d)triply fused benzofulvenes· The dottedlineisNICSfI)=0 0 缱{&r f }“ ̄i!:ASE=0 38 7 .2 1 N托sl蛆 15 .6 I 3N|cstl} Fig.2 Strong linear correlations between& BP and NICS(I)of Ring A for for(a)singly fused benzo fulvenes;(b)doubly fused benzofulvenes; and(e)triply fused benzofulvenes. The dotted line is NICS(11=0 Fig.3 SWong linear correlations between&:BP and ASE for(a) To veriry our above findings,Fig.3 shows the ASE substituted falvene derivatives of different ring sizes;and(b)singly fused benzofuIvenes. The dottedlIncisASE=0 correlation results with one of IT quantities,ScBP,for species (a)without and(b)with one benzene fusion.Again,a dotted line iS used to separate aromatic and antiaromatic regions. Comparing the plots for the two systems.with and without positively sloped lines and two negatively sloped lines, respectively.Put together,our results demonstrate that benzene fusion does not change the correlation patterns among benzene fusion,it can be readily seen that the changing patterns of ASE with respect to SGBP are the same,each with two NO.6 doi:l0.3866/PKU.WHXB201710231 647 aromaticity indices,among IT quantities,as well as cross correlations between these two categories of quantities.The characteristics of也ese correlations for the benzene fused fulvene derivatives is dictated by the fulvene moiety. ;Osuka,A.;Kim,D.Nat.Chem.2009,,,113. f1O) Yoon,Z.S.doi:10.1038/nchem.172 ckson,C.K.;Zakharov,L.N.:Haley,M.M. AmChem.(11) Frederi .Soc.2016,138,16827.doi:10.1021 ̄acs.6bl1397 5 Conclusions As a continuation of our endeavor to appreciate moleculr adyrev,A.I.;Popov,I.A.;Starikova,A.A.;Steglenko,D.V (12) BolChem.一 2017.doi:10.1002/chem.201702035 aromaticity and antiaromaticity using information.theoretic quantities from density functional reactivity theory,in this work,we have systematically examined substituted fulvene derivatives fused with one,two,and three benzene rings.We ;Anglada,J.M.;Torrent—Sucarrat,M. Org.Chem. (13) Marcos,E.2014,79,5036.doi:10.1021 ̄o500569p efl,M.;Latos-Gra2yfiski,L.;Sprutta,N.;Chwalisz,P; (14) St ̄pihave considered the correlations,for these systems,among four aromaticity descriptors,ASE,FLU,HOMA,and NICS,and six information—theoretic quantities,Shannon entropy,Fisher information,Ghosh·Berkowitz—Parr entropy,information gain, Onicescu information energy,and relative Renyi entropy,as well as cross correlations between these two categories of properties.Our results show that with and without fused benzene rings,above correlation pattems are the same, suggesting that,even though we know that benzene itself is raomatic,its fusion with the fulvene moiety does not change the characteristics of the aromatic and antiaromatic nature of the fulvene ring. In other words, aromaticity and antiraomaticity of benzene fused fulvene derivatives are solely determined by the fulvene moiety.These results should shed new light on our understnading about the origin and nature of aromaticity nad natiaromaticity ofr this and other systerns. References (1)Solh,M.Front.Chem.2017,5,1.doi:10.3389/fchem.2017.00022 (2)Herndon,W C.;Mills,N.S. Org.Chem.2005,70,8492. doi:10.1021 ̄o051289b (3)Sk0v’A.B.;Broman,S.L.;Gertsen,A.S.;Elm,J.;Jevric,M.; Cacci ni,M.;Kadziola,A.;Mikkelsen,K.V;Nielsen,M.B. Chem.一 2016,22,l4567.doi:10.1002/chem.20160l190 (4)Aihara,J.一I. Am.Chem.Soc.2006,128,2873. doi:10 1021 ̄a056430c (5)Cyrafiski,M.K.Chem.Rev.2005,105,3773. doi:10.102l/cr0300845 (6)Feixas,F;Matito,E.;Poater,J.;Solh,M.Chem.Soc.Rev.2015, 44.6434.doi:10.1039/C5CSO0066A (7)Sumita,A.;Qasonoo,M.;Boblak,K.J.;Ohwada,T.;Klumpp,D. A. em.一Eur 2017,23,2566.doi:10.1002/chem.201606036 (8)Szczepanik,D.w;Sola,M.;Andrzejak,M.;Pawe ̄ek,B.; Dominikowska,J.;Kukutka,M.;Dyduch,K.;Krygowski, M.; Szatylowicz,H.J=Comput.Chem 2017,38,1640. doi:10.1002 ̄ee.24805 (9)Liu,J.Z.;Ma,J.;Zhang,K.;Ravat,P.;Machata,P.;Avdoshenko, S.;Hennersdor£F;Komber,H.;Pisula,W.;Weigand,J.J.;et a1. Am.Chem.Soc.2017,139,7513.doi:10.1021 ̄acs.7b01619 Szterenberg,L.Angew.Chem.2007,I19,8015. doi:10.1002/ange.200700555 (151 Szyszko,B.;Sprutta,N.;Chwalisz,P;Stqpiefl,M.; Latos—Gra2yfiski,L Chem.-Eur. 2014,20,1985. doi:10.1002/chem.2O1303676 (16) Mobius,K.;Plato,M.;Klihm,G.;Laurich,C.;Savitsky,A.; Lubitz, ;Szyszko,B.;Stepien,M.;Latos—Grazynski,L. Chem.Chem.Phys 2015,i 7,6644.doi:10.1039/C4CP05745G (17) M6bius,K.;Savitsky,A.;Lubitz, ;Plato,M.App1.Magn.Reson. 2016.47,757.doi:10.1007/s00723—016-0789—1 (18) Marcos,E.;Anglada,J.M.;Torrent-Sucarrat,M. Phys.Chem.C 2012,116,24358.doi:10.1021 ̄p3083612 f19) Rosenberg,M.;Dahlstrand,C.;Kilsfi,K.;Ottosson,H.Chem Rev. 2014,114,5379.doi:10.1021/cr300471v (2O) Ottosson,H.Nat.Chem.2012,4,969.doi:10.1038/nchem.1518 (21) Liew,J.Y_;Brown,J.J.;Moore,E.G.;Schwalbe,M.Chem.-Eur 2016,22,16178.doi:10.1002/chem.201602189 (22 Naskar,S.;Das,M.ACS Omega 2017,2,1795. doi:10.1021/acsomega.7b00278 (23) van Leeuwen,T;Pol,J.;Roke,D.;Wezenberg,S.J.;Fefinga,B.L. Org.Lett.2017,19,1402.doi:10.1021/acs.orglea.7b00317 (24) Feixas,F;Matito,E.;Poater,J.;Solh,M.WIREs:Comput.Mo1. Sci.2013。3.105.doi:10.1002/wcms.1115 (25) BOhl,M.;Hirsch,A.Chem.尺 2001,101,1153. doi:10.1021/cr990332q (26) El Bakouri,O.;Duran,M.;Poater,J.;Feixas,F;Sola,M. . Chem Chem.Phys.2016,18,11700.doi:10.1039/C5CP07011B (27) Zhu,C.Q.;Yang,c.x.;Wang,YH.;Lin,G.;Yang,YH.;Wang, X.Y;Zhu,J.;Chen,X.Y;Lu,X.;Liu,G.;eta1.Sci Adv.2016,2, e1601O31.doi:10.1126/sciadv.1601031 (281 Ayub,R.;Bakouri,O.E.;Jomer,K.;Sola,M.;Ottosson,H. Org. Chem.2017,82,6327.doi:10.1021/acs.joc.7b00906 (29) Suzuki,S.;Morita,Y;Fukui,K.;Sato,K.;Shiomi,D.;Takui,T; Nakasuji,K. Am.Chem.Soc.2006,128,2530. doi:10.1021/ja058387z (30) Chen,Z.F;Warmere,C.S.;Corminboeuf,C.;Puchta,R.;von Ragu6 Schleyer,P Chem. Pv 2005,105,3842. 648 Acta Physico—Chimica Sinica V01.34 dol:10.102l/cr030088+ (31)Schleyer,P v R.;MaerkeL C.;Dransfeld,A.;Jiao,H.;vail Eikema Hommes,N.J.R. Am.Chem Soc 1996,118,6317. doi:10.1021Oa960582d (32)Fallah—Bagher-Shaidaei,H.;Wannere,C.S.;Corminboeuf,C.; Puchta,R.;Schleyer,P v R.Org Lett.2006,8,863. doi:10.1O21/010529546 (33)Krygowski, M.;Szatylowicz,H.;Stasyuk,O.A.; Dominikowska,J.;Palusiak,M.Chem.Rev.2014,114,6383. doi:l0.1021/cr400252h (34)Poater,J.;Fradera,X;Duran,M.;Solh,M.Chem-Eur. 2003,9, 400.doi:10 1 002/chem.20039004 1 (35)Matito,E.;Duran,M.;Solh,M. Chem.PJ .2005,122,014109. doi:1O.1063/1 1824895 (36)Hong,Y;Oh,J.;Sung,Y M.;Tanaka,Y;Osuka,A.;Kim,D. AngewChem.1nt.Ed.2017,56,2932. doi:10 1002/naie_2O16l143l (37)Feixas,F.;Matito,E.;Poater,J.;Sol/t,M. Comput.Chem 2008, 29.1543.doi:10.1002 ̄cc.20914 (38)Yu,D.H.;Rong,C.Y;Lu, ;Chattaraj,RK.;De Profl,F;Liu,S B.Phys.Chem Chem Phys.2017,19,、8635. doi:10 1039/C7CP03544F (39)Liu,S.B.Acta 一Chim Sin 2016,32,98. doi:10.3866/PKU.WHXB2015l0302 (40)Liu,S.B.Acta P厅 -Chim.Sin.2009,25,590. doi:1 0.3866/PKU.WHXB20090332 (41)Zhao,L.L.;Grande—Aztatzi,R.;Foroutna·Nejad,C.;Ugalde,J. M.;Frenking,G.ChemistrySelect 2017,2,863. doi:10.1002/slct 201602080 (42)Ciesielski,A.;Krygowski,T M;Cyranski,M.K.;Balaban,A. Phys.Chem Chem.Phys.2011,13 3737. doj:1O lO39/COCPO1446J (43)Bemasconi,C.F;Wenzel,E J. Org Chem.2010,75,8422. doi:10.1021 ̄o101719z (44)Mo,Y R.;SchleyeL P v.R.Chem.-Eur 2006,12,2009. doi:1O.1O02/chem.200500376 (45)Gershoni-Poranne,R.;Stanger,A.Chem.Soc.R 2015,44,6597 doi:1O.1039/C5CSO0l14E (46)De Oliveira,B.G.Phys Chem.Chem.Phys 2013,15,37. doi:l0.1039/C2CP4l749A (47)Zhu,J.;An,K.;Schleyer,E v.R.Org.Lett.2013,15,2442. doi:l0.1021/o1400908z (48) Cyrafiski,M.K.;Krygowski, M.;Ka ̄itzk A R.;Schleyer,P V.R. Org.Chem 2002,67,1333.doi:lO.1021 ̄o016255s (49)Krygowski, M.;Cyraflski,M.K.Chem.Rev.2001,101,1385. doi:】0.】O2】/cr990326u (50)Alvarez—Thon,L.;Mammino,L.1nt. Quantum Chem.2017,11 7, e25382,doi:10.1002/qua.25382 (5 1)Karadakov,P B.;Heamshaw,P.;Homer,K E Org.Chem 2016,8l,11346.doi:1O.1021/acs.joc.6b02460 (52)Boll,M;Hilker, A.;Salomon,G.;Omran,A.;Nespolo,J.; Pollet,L.;Bloch,1.;Gross,C.Science 2016,353,1257. doi:10.1126/science.aag1635 (53)Sundholm,D.;Fliegl,H.;Berger,R.J.F WIREs."Comput.Mol Sci.2016,6,639.doi:10.1002/wcms.1270 (54 Liu,S.B.J.Chem PhyS.2007,126,191107. doi:10.1063/1.2741244 (55)Liu,S.B.;Rong,C. ;Wu,Z.M.;Lu,T.Acta P —Chim Sin. 2015,2057.doi:10.3866/PKU.WHXB201509183 (56)Noorizadeh,S.;Shakerzadeh,E.Comput Theor Chem.2011,964, 141.doi:10.1016 ̄.comptc.2010 12.012 (57)M611erstedt,H.;Piqueras,M.C;Crespo,R.;Ottosson,H. Am. Chem.Soc.2004,126,13938.doi:10.1021 ̄a045729c (58)Becke,A.D. Chem.Phys.1993,98,5648 doi:org/10.1063/1.464913 (59)Lee,C.;Yang,w;Parr,R.G JD『 Rev.B1988,37,785. doi:10.1 103/PhysRevB.37.785 (60)Francl,M.M.;Pietro,w J.;Hehre,W.J.;Binkley,J.S.;Gordon, M.S.;DeFrees,D.J.;Pople,J.A. Chem.|D 1982,77,3654. doi:10 l063/1 444267 (61)Rassolov,V A.;Ratner,M.A.;Pople,J.A.;Redfem,P C.;Curtiss, L.A. Comput Chem.2001.22.976.doi:10.1002 ̄cc.1058 (62)Frisch,M.J;Trucks,G.W;Schlegel,H.B.;Scuseria,G.E.; Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V; Mennucci,B.;Petersson,G A.;et al Gaussian 09,Revision E.O1: Gaussian Inc.:Wallingford,C USA,2013. (63)Kudin,K.N.;Scuseria,G.E.;Canc6s,E. Chem.P .2002, 』, 8255.doi:10.1063/1.1470195 (64)Lu, ;Chen,Fw Comput.Chem.2012,33,580. doi:10.1002 ̄cc.22885 (65)Becke,A.D. Chem. 1988,88,2547.doi: 10.1063/1 454033 (66)Richard,F;Bader,R.Atoms in Molecules:a Quantum Theory; Oxford University Press,Oxford,UK,1990. (67)Hirshfeld,F.L.Theor Chim Acta 1977,44,129. doi:10,l007/bf00549096 (68)Zhou,X. ;Rong,C.5L;Lu,T;Liu,S.B Acta尸协 -Chim Sin 2014.3O.2055.doi:1O.3866/PKU.WHXB201409193 t69)Liu,S.B.J Phys Chem A 2015,119,3107. doi:10.1021/acs.jpca.5b00443 (70)Kohn,w;Sham,L.J. Rev.1965,140,AI 133. doi:10.1103/PhysRev.140.A1133 NO.6 doi:10.3866/PKU.WHXB201710231 649 :Rong,C.Y;Ying,D.L.;Liu,S.B. Theon Comput. (71) Zhao,D.B.Chem.2013,12,1350034.doi:10.1142 ̄021963361350034x ;Wu,Z.M.;Rong,C.Y;Lu, ;Huang,Y;Liu,S.B. (72) Wu,W.J.1496.doi:l0.1039/(26CP06376D (76)Zhou,X.Y;Rong,C.Y;Lu,工;Zhou,E P.;Liu,S.B. . Chem.A 2016,120,3634.doi:10.1021/acs.jpca.6b01197 (77)Noorizadeh,S.;Shakerzadeh,E.Phys.Chem Chem.Phys 2010, 12,4742.doi:10.1039/B916509F Phys.Chem.A 2015.119,8216.doi:10.102l/acsdpca.51304309 ;Rong,C.Y;Lu, ;Ayers,E、Ⅳ.;Liu,S.B. (73) Wu,Z.M.. Chem.Chem.Phys.2015, 7,27052.doi:10.1039/C5CP04442A f78)Snyde ̄G.J. Phys.Chem.A 2012,116,5272. (74) Huang,Y;Rong,C.Y;Zhang,R.Q.;Liu,S.B. Mo1.Mode1. 2016,23,3.doi:10.1007/s00894-016—3175一x u,S.B.;Rong,C.Y;Lu, Phys.Chem.Chem f751 Li.2017,19, doi:10.1021 ̄p304015k (79)Halton,B.Eur. Org,Chem.2005,2005,3391. doi:10.1002/ejOC.200500231 

因篇幅问题不能全部显示,请点此查看更多更全内容