5.2平行线及其判定
一、双基回顾
1、平行线:在同一平面内, 的两条直线叫做平行线。 2、两条直线的位置关系: .
〔注〕这里指不重合的两条直线,两条直线重合视为一条直线。 判断正误并改错:
①两条直线不相交就平行,不平行就相交; ②在同一平面内,两条线段不相交就平行; ③两条直线的位置关系有:相交、垂直、平行.
3、平行公理:经过直线 有且只有 与这条直线平行。 推论:如果两条直线都和 平行,那么这两条直线 。 4、同位角、内错角和同旁内角
两条直线被第三条直线所截,在截线的 ,被截直线的 的两个角叫做同位角;在截线的 ,被截直线 的两个角叫做内错角;在截线的 ,被截直线 的两个角叫做同旁内角。
指出图中所有的同位角、内错角、同旁内角。
A E
B 5、平行线的判定
C D
(1) ,两直线平行; (2) ,两直线平行; (3) ,两直线平行.
如图,判断DE∥AC的条件有哪些?依据是什么?
A E B 二、例题导引
例1 如图,下列推理中正确的有〔 〕
D
F C
人教版数学七年级下册-打印版
① 因为∠1=∠2,所以BC∥AD; ② 因为∠2=∠3,所以AB∥CD; ③ 因为∠BCD+∠ADC=180,所以BC∥AD; ④ 因为∠BCD+∠ADC=180,所以BC∥AD.
B 2 1 00
A
4 3 D
C
A、1个 B、2个 C、3个 D、4个
例2 如图,BE平分∠ABC,∠1=∠2,你能推断哪两条线段平行?说明理由。
A D 1 B 3 2 E C
例3 如图,已知AC⊥AE,BD⊥BF, ∠1=∠2,AE与BF平行吗?为什么?
E A
三、练习提高
夯实基础
1、下列说法正确的有〔 〕
①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行;③过一点有且只有一条直线与已知直线平行;④若a∥b,b∥c,则a与c不相交. A.1个 B.2个 C.3个 D.4个
2、在同一平面内,两条不重合直线的位置关系可能是〔 〕
F C 1 D 2 B
人教版数学七年级下册-打印版
A.平行或相交 B.垂直或相交 C.垂直或平行 D.平行、垂直或相交
3、如图,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若∠A=∠1,则可判断_______∥_______,因为________. (2)若∠1=∠_________,则可判断AG∥BC,因为_________. (3)若∠2+∠________=180°,则可判断CD∥AB,因为____________.
GD1E2C
AFB
3题
4、如图,光线AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的位置关系是 ,BE和DF的位置关系是 .
A 1 E 2 C 3 4 F D BA
B
CD
4题 5题
5、如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
6、不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互〔 〕 A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交
7、如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下: ∵∠ECD=∠E( )
∴CD∥EF( ) 又AB∥EF( )
∴CD∥AB( ).
8、根据下列要求画图.
(1)如图(1)所示,过点A画MN∥BC;
(2)如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H; (3)如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB•的延长线交于
点F.
BDECFA
人教版数学七年级下册-打印版
APADCBC
OB
AB
(1) (2) (3) 9、如图所示,已知∠1=∠2,AC平分∠DAB,试说明DC∥AB.
DC21AB
10、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de1234abc3A12D4c
4132a
6578
BC
b
10题 11题 13题
能力提高
11、如图1所示,下列条件中,能判断AB∥CD的是〔 〕
A.∠BAD=∠BCD B.∠1=∠2; C.∠3=∠4 D.∠BAC=∠ACD 12、在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______. 13、如图所示,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( ) A.①② B.①③ C.①④ D.③④
14、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是〔 〕
A、0个 B、1个 C、2个 D、3个
17、已知,如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
人教版数学七年级下册-打印版
FDE21ABC
18、如图所示,已知AB、CD被EF所截,EG平分∠BEF,FG平分∠EFD,且∠1+∠2=900,试说明AB∥CD.
A C
F E 1 2 G
B D
探索创新
19、如图,当∠BEF=∠B,∠BED=∠B+∠D时,AB与CD有什么位置关系,试说明理由。
A E
C
D B F
因篇幅问题不能全部显示,请点此查看更多更全内容