您的当前位置:首页正文

曲线拨道量的优化计算

2021-06-11 来源:爱go旅游网
曲线拨道量的优化计算可了曲台史“巾‘。”、、。、,,、、、󰀁柳州铁路局计划统计处󰀁、,、、、枷、、。,、,。、、󰀁【提要】目前我国拨道量计算中使拨道量最小所满足的条件不理想出的目标函数及约束条件运用策优化原理提可使拨道量的计算给果达到最优状态【关键词】铁路曲线拨道量优化计其到真正的拨道量的优化计算拨道量计算的现状在既有线平面改建及日常线路的大󰀁中拨道量优化计算的目标函数及维修中正矢,根据外业测得的曲线正矢或偏角来确约束条件要使全曲线各点拨道量󰀁上挑与内压󰀁最小定使该曲线保持圆顺所需要的曲线半径各点拨道量等󰀁目前我国计算方法大致可归󰀁应该旋全曲线各点拨道量的平方和最小,纳为三种󰀁󰀁󰀁󰀁󰀁流水拨道量计算法即󰀁屯该使乞󰀁󰀁󰀁󰀁最小’󰀁󰀁,󰀁半拨道量计算法󰀁以流水拨道量计算法为例设曲线如图󰀁所,‘󰀁󰀁简易拨道量计算法在这些拨道量计算法中很少考虑对全曲,线各点拨道量的整体状态进行优化大部分的拨道量计算优化程序是针对流水拨道量计算法通过对拨道量的优化来选择曲线半径的基,木要求是使全曲线各点的拨道量的代数和尽量小或等于零然而这样衡量全曲线的拨道量最小显然不全面如果曲线某点的外挑量及另,一点的内压量同样很大就会出现局部点的拨,道量很大而整体拨道量很小的情况因此未达图󰀁曲线拨道计算简图当矩形梁高宽比󰀁󰀁一󰀁󰀁,上式为一几即󰀁匕强度条件下筋的用钢量,庸三肢箍替代二肢箍可以节省箍󰀁󰀁󰀁本文提出用新型的三肢箍来替代目前广泛比“一󰀁当矩形梁高宽一󰀁󰀁上式为一六,即使用的二肢箍据的筋,从现有的构造规定来看是有根所谓节省箍筋的用量也就是省去上肢󰀁󰀁󰀁和下肢的钢筋或是部分省去上肢或󰀁肢的钢,从比较结果看因此铁道建筑,在高宽比󰀁二󰀁󰀁时,节省箍筋的用量也接近󰀁󰀁也是有经济效益的,改回日期󰀁󰀁󰀁了一󰀁󰀁一󰀁。可以得出结论󰀁。,󰀁在满足相同的抗剪‘责任审编端木普󰀁年第󰀁期—󰀁󰀁一示󰀂 测点间距󰀁各点的实测正矢分别为󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁王,󰀁󰀁󰀁由绳正法及角图原理计算出各点转角󰀁󰀁󰀁󰀁二艺󰀁󰀁󰀁󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁,󰀁󰀁󰀁󰀁󰀁遥󰀁󰀁󰀁匀‘「边󰀁󰀁论该曲线的角图如图󰀁卜尸尸妞卜图󰀁󰀁󰀁󰀁,。󰀁州曲中点不变的曲线角图。󰀁󰀁󰀁󰀁󰀁󰀁,设测量长度为󰀁挂󰀁󰀁󰀁据此可求出曲线各特征󰀁󰀁众󰀁󰀁乙知户,‘󰀂众󰀁点󰀁󰀁󰀁,󰀁一󰀁󰀁󰀁图󰀁曲线角图󰀁󰀁“󰀁󰀁一󰀁󰀁八󰀁一󰀁。介󰀁󰀁󰀁󰀁󰀁󰀂二󰀁󰀁󰀁󰀁。曲线转角󰀁󰀁󰀁名󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂”󰀁󰀁󰀁󰀁󰀁󰀁十󰀁󰀁。󰀁󰀁󰀂二󰀁󰀁一󰀁。各点渐伸线长度󰀁即各点对应的角图面积󰀁为󰀁对于距测量起点为󰀁的各点渐伸线长󰀁󰀁󰀁󰀁󰀁‘󰀁󰀁艺艺󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀁󰀁󰀁,󰀂󰀁“󰀁󰀁󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁为󰀁󰀁󰀁󰀁󰀁二󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀁。。󰀁󰀁󰀁终点的渐伸线长󰀁全角图面积󰀁为󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁,󰀁󰀁󰀁󰀁󰀂名。,󰀁󰀁󰀁󰀁󰀁,󰀁󰀁󰀁一󰀁󰀁󰀁󰀁󰀂󰀁而󰀁󰀁󰀁󰀁镇󰀁󰀁󰀁󰀁󰀁,󰀁󰀁󰀁󰀁󰀁󰀁󰀁二󰀁󰀁󰀁一󰀁󰀁󰀁󰀁󰀁󰀁九󰀁一󰀁󰀁一󰀁󰀁󰀁󰀁。󰀁󰀁󰀁󰀁󰀁󰀁二乙乙󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀁󰀁󰀁。󰀂󰀁󰀁󰀁󰀁󰀂。󰀁󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁二󰀁󰀁一󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁现需求出在给定缓和曲线长度󰀁条件下曲线半径󰀁󰀁未知数󰀁的曲线󰀁见图󰀁󰀂及相应角线󰀁见图󰀁󰀁󰀁各点拨道量󰀁󰀁󰀂为󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁一󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁,使得实测曲线总拨道量为最小,各点的设计正矢󰀁󰀁󰀂󰀁󰀂为󰀁󰀁󰀁󰀁󰀁二〔󰀁󰀁󰀁󰀁󰀁一󰀁设计曲线时必须保证󰀁,󰀁󰀁󰀁󰀁‘一󰀁󰀁󰀁󰀁斗󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁必须使曲线整正前后两端切线方向󰀁〕󰀂󰀁󰀁󰀁󰀁。󰀁不变为零,亦即曲线总转角。不变为此,根据最优化原理可建立如下的目标󰀁保证曲线整正前后测量终点的拨道量即测量终点设计曲线角图面积与既有线函数与约束条件󰀁目标函数󰀁󰀁二角图面积相等’艺󰀁󰀁󰀁,󰀁󰀁󰀁󰀁由图󰀁可知,凡是经过曲线中点󰀁󰀁󰀁󰀁的,曲线,如转角󰀁不变,其构成的角图面积都相,约束条件󰀁󰀁等󰀁如图󰀁所示󰀁可以利用这一特点来满足二艺󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁测量终点拨道量为零的要求设角图面积为󰀁󰀁󰀁󰀂 距离为󰀁。󰀁,,󰀁󰀁点距末测点的󰀁曲线方向不变)则有󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁,󰀁󰀁(测量终点不动)铁道建筑1997年第3期一34一附裹计划正矢与拨道且的对比优化计算拨量计划正矢{推荐程序计算测有限制点计算拨量计划正矢点实测正矢计划正矢拨量91肠0000.一08.一0800一4;::匕匀一159864比3510291875437”60一19一15…󰅐a4…一0..355.151.240329..Q1g90一4一16一22一200󰅟n0勺匕匕匕RZ一18一49一85e1090只一109一102一61一212…0一26一58JO2-3…一16一54一98e124一126一80一82一121一82一42一万8e43一15一18一8一27249104139匕一30一50一21268211了一54一41一645806161…169150134763612一3Q一45::勺孟2…:014713111660222..1109685340一1600一38一510一53一61一60一49一!29400一53一15一1774074000000383最优曲线半径及拨道且计算以上目标函数隐含了两个约束条件,min可以)乙D(£‘“(11)简化为如下无约束优化问题铁道建筑:因为D为设计渐伸线WS的函数而WS又是曲线半径R的函数故D仅为R的函数即,,,199了年第3期一35一40实例与结论以某曲线为例实测正矢如附表中第2栏,,(少D小旦‘~日aR’_一乙2‘aD(i)aR可以看出,这个曲线现状很乱,,圆曲线内相邻,正矢差己达41mm最大最小差为48mm要彻底整正这样的曲线拨道量肯定不小日WS(f)aWS(i)=2000刁R栏为采用目前工务系统推荐程序计算出的计划正矢与拨道量,5栏为利用本文所述原理编aWS(i)iD乙()a左一=可裕方程制程序计算出的计划正矢与拨道量线在13点内压限制值小于80mm制值80mm计算结果见第7栏,假设该曲点外挑限,32:乙D(小刁WS(i)刁R(,12经比较)168mm,推荐程序计算出的最大外挑值为最大内压值为109mm各点拨道量,,该方程为曲线半径R的一元超越方程无平方和为164269mm5mm大外挑值为14,Z卞优化程序计算的最,解析解,可采用牛顿一雷扶生等数值方法用计,6mm最大内压值为12各算机编制程序求解同时可根据À式计算Z点拨道量平方和为158373mm从拨道量总出拨道量及设计正矢体可以看出道口比较均匀,本优化程序计算的各点拨道量值没有偏向哪一侧在实际外业测量中可能会遇到小桥等控制点不能移动或其它情况,,最大一点的拨动,限制了上挑或量也要小一些说明设计曲线妥比目前推荐程内压值调整,,这样就需要对优化出来的正矢做局部序计算的设计曲线与实测曲线拟合得好些避使之满足限制条件方法是在优化计算,免了由于计算带来的不必要的大拨道量法优于推荐程序所采用的方法该方出来的正矢的基础上逐步叠加数组逐点试算作出各种组合状态下的位的状况)乙D(‘2值,选用最小:改回日期199了1一20一0责任审编李从熹三接第39页)(」5%~2。%的粉煤在摆喷液中掺加1,水位不再降,地面沉降元全停止,楼房不再灰后,工程质量同样可以满足设计要求并可的淤开裂下沉大,挖孔桩内抽水量很施做摆喷墙后抽水量只是原来的1/5l摆览谙施作前降低工程成本摆喷注浆可用于N值为。~03泥固粘性土如桥墓砂质土和粒砂等地层的上体加房基由于阻水成功摆喷墙还改善了土体,隧道不良地质的加固补强的物理力学性能为可塑状淤泥层由原来的流塑状,变及地基的加固等,给施工带来很大方便利用高压摆喷注浆对地基进行加固摆喷墙为车站防水工作减小了难度补强具有设备简单低等优点工期短效果可靠造价几点体会用于区域隔水效果也很理想:改回日期19盯一1一2。((1)利用摆喷注浆可改善土层强土体承载力结构,增责任审编铁道建筑徐奇珍1997年第3期一36一

因篇幅问题不能全部显示,请点此查看更多更全内容