您的当前位置:首页正文

三角形的中位线教案及教学设计说明

2022-03-17 来源:爱go旅游网
 三角形的中位线

教材 上海教育出版社九年义务教育课本数学八年级第二学期 内容 第二十二章《四边形》 22.6三角形、梯形的中位线 [教学目标]

1. 理解三角形中位线的概念,知道三角形的中位线与中线的区别;掌握它的性质及初步应用.

2. 经历三角形的中位线定理的探索过程,体会转化的数学思想方法. 3. 通过积极参与数学学习的活动,初步形成乐于探究的态度和团队合作的精神.

[教学重点]

三角形的中位线定理及运用定理进行简单的几何计算和论证.

[教学难点]

三角形的中位线定理的证明.

[教学过程]

教学流程 教 学 内 容 说明 通过学生操作引(一) 一张三角形纸片,能否沿一条直线把它分割成入三角形中位线的定义,并为三角形中位线定理的证明作铺垫. 实验 一个梯形和一个小三角形,且使所得的梯形和小 操作 三角形恰好拼成一个平行四边形? 1.导入三角形中位线的概念:联结三角形两边的理解三角形中位中点的线段叫做三角形的中位线. 线的概念,并能(三角形中位线有几条?三角形的中位线与中线区分三角形的中的区别?) 位线与中线. 1

(二) 猜测 论证 2.演示并猜想:三角形的中位线DE与BC有怎通过演示,让学样的位置关系?又有怎样的数量关系? 生大胆猜测,有利于激发学生探究的兴趣. 3 .证明三角形的中位线定理. 由学生讨论得到添加辅助线的方法,并进一步掌握定理的规范表达,培养学生严谨的科学态度. 知: 已知: 如图,在△ABC中,AD=BD,AE=CE; 求证: DE = 1 BC且DE∥BC. 2证明:延长DE到F,使EF=DE,联结CF. ∵AE=EC,∠AED=∠CEF, ∴△AED≌△CEF, ∴∠A=∠ECF, AD=CF, ∴AB∥CF ,即BD∥CF, ∵AD=DB,AD=CF, ∴DB=CF. ∴四边形BCFD是平行四边形. (一组对边平行且相等的四边形是平行四边形) ∴DF=BC,且DF∥BC, ∴DE = 1 BC,且DE∥BC. 24. 归纳三角形的中位线定理:三角形的中位线渗透数形结合思平行于第三边,并且等于第三边的一半. 结合图形给出数学表达形式: 在△ABC中, ∵ D、E分别是边AB、AC的中点, ∴ DE∥BC,且DE =

想方法,培养学生的口头表达能力和归纳能力. 1 BC . 2强化双基训练,让更多的学生获得成功,并增强1.填一填: ① 如图:已知在△ABC中,AD=DB,AE=EC (1)若BC=5,则DE= ; 2

(2)若F是BC的中点,DF=2, 则AC= ; (3)在(2)的条件下,联结EF, 若∠B=52°,则∠EFC= ° 若△ABC的周长是15cm,则△DEF的周长 . 学习的自信. 渗透数学服务于(三) ② 如图:B、C两点被海水隔开,在B、C外选巩固 训练 择一点A,找到AB、AC的中点E、F,测量出EF=22米,则B、C两点间的距离为 . 实践的意识. 2.试一试: 已知:如图,点O是△ABC内任意一点,D、E、F、G分别是OA、OB、BC、AC的中点. 求证:四边形DEFG是平行四边形. 3.练一练: 灵活运用三角形的中位线定理完成证明过程,并能一题多解. 通过巧妙构造三 已知:在四边形ABCD中,点E、F、G、H分别角形,并运用三是边AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形. 角形的中位线定理来解题,体会三角形中位线定理的魅力,巩固新知识. 3

通过本节课的研究,你感悟到什么? 学生自主小结,提高学生的数学概括表达能力,增强学生学习过程中的反思意识. 体现分层教学思想,给学生创造(四) 还有什么疑惑? 交流 小结 1、必做题:练习册 习题22.6(1) 2、选做题: (五) (1) 顺次联结平行四边形四条边的中点,所得的发现规律的条四边形是 . 件,培养学生形成做题后勤总结解题规律的习作业 (2)顺次联结矩形四条边的中点,所得的四边形布置 是 . 是 . (4) 顺次联结正方形四条边的中点,所得的四边形是 .

教学设计说明

(3)顺次联结菱形四条边的中点,所得的四边形惯. 一、教材分析

1、教材的地位与作用

本节课的教学内容是上海市二期课改新教材八年级第二学期第二十二章《四边形》第三节《梯形》中的第三课时《三角形的中位线》.它是在学生学完了三角形、四边形内容之后作为三角形和四边形知识的应用和深化.三角形中位线定理的论证是以平行四边形的有关定理为依据的,是平行四边形知识的综合应用.三角形的中位线定理是三角形的一个重要性质定理,在证明两直线平行和论证线段倍分关系时常常要用到,也为下一节学习梯形的中位线定理的证明起到很好的铺垫作用.

2、教学目标

(1) 理解三角形中位线的概念,知道三角形的中位线与中线的区别;掌握它的性质及初步应用.

4

(2) 经历三角形的中位线定理的探索过程,体会转化的数学思想方法. (3) 通过积极参与数学学习的活动,初步形成乐于探究的态度和团队合作的精神.

3、教学重点、难点:

教学重点:三角形的中位线定理及运用定理进行简单的几何计算和论证. 教学难点:三角形的中位线定理的证明.

二、学情分析

我班学生个性活泼,思维活跃,具有独立思考,乐于探究,积极交流的习惯和能力;以八年级学生的心理素质和认知水平,通过实验几何、论证几何的学习,学生的思维能力有了提高,初步掌握了简单的推理论证和演绎证明的方法,逻辑推理的能力也有了提升;但对几何语言的规范表达和新旧知识迁移的感悟上有所欠缺.

三、教法、学法分析

在本节教学中,我始终坚持以学生为主体,教师为主导的教学原则,通过师生互动,生生互动,来体现这一教学原则的落实,在整个教学过程中我特别关注学生的有效活动,紧紧抓住学生“动”这条主线、充分利用学生感官来突破难点、关注发展学生的动手能力、动口能力和动脑能力.采用以启发讨论、引导探究、多媒体辅助教学等多种方法相结合的策略组织教学过程.

根据课程标准的指导思想,本着“思路让学生想,疑难让学生议,规律让学生找,结论让学生得,小结让学生讲”的原则,在学习过程中通过学生自己动手、参与教学过程、发现问题、讨论问题等环节,努力培养学生体验感悟、比较学习、猜测论证、交流归纳等学习方法,努力实现学生由“学会”到“会学”的学习方式的转变.

四、教学环节设计

为体现“以学生发展为本”的教学理念,我在教学过程中设计了如下五个环节: (一)实验操作;(二) 猜测论证;(三) 巩固训练;(四)交流小结;(五) 作业布置. 1、实验操作

我认为:“智慧出于手指尖”,“眼过千遍不如手过一遍”.学习的最佳途径是由

5

自己去发现,自己去亲身体会的,这样才会理解最深,也最容易掌握其中的规律、性质和联系.因此,在课堂教学中我设置了实验操作“一张三角形纸片,能否沿一条直线把它分割成一个梯形和一个小三角形,且使所得的梯形和小三角形恰好拼成一个平行四边形?”这一环节的设置不仅是为了导出三角形的中位线的定义,也是为后面三角形的中位线定理的证明方法作铺垫的,有利于突破三角形的中位线定理证明的难点. 2、猜测论证

在认识了三角形中位线的概念之后,由其定义学生可以发现三角形的一条中位线平分与它相交的两条边,那么它与第三条边会不会也存在一些特殊的关系呢?在这里我设置了问题:猜测“三角形的中位线DE与BC有怎样的位置关系?又有怎样的数量关系?”这样可以激发学生的求知欲,考虑到部分学生有自己的想法而信心不足,因此我通过几何画板演示三角形的中位线与第三边的数量关系与位置关系,引发学生仔细地观察DE与BC的长度变化关系,并观察∠ADE、∠ABC的大小关系,让学生从动态中去观察、探索、归纳知识 “三角形的中位线等于第三边的一半,并且平行于第三边”,这不仅让学生对所学内容留下了深刻的印象,而且能力

得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法.这时我又及时指出,猜测和实验不能代替证明,那么如何证明这些猜想呢?这里先让学生讨论如何证明猜想的结论:“DE =

1BC”,证明线段的倍半关2系学生会想到应用“截长”、“补短”法,但由实验操作学生自然而然地想到了延长DE来添加辅助线的方法,构建中心对称图形并利用三角形全等及平行四边形的性质证明了这个猜想,从而突破了证明三角形的中位线定理的难点.回顾定理的形成,经历了“提出问题――观察实践――得到猜想――证明猜想”四个步骤,感受了实验几何到论证几何的演进过程,培养了学生严谨的科学态度,提高了学生的逻辑思维能力和推理论证及规范的表达能力. 3、巩固训练

在巩固训练中我设置了三个层次的练习:在“填一填”中,让学生熟悉三角形的中位线定理的简单运用;在“试一试”中,为使学生进一步巩固对定理的理解及语言的规范,让学生学会书写简单的证明过程,并能一题多解;“练一练”的要求在

6

原先基础上有了提升,题目要求学生先根据题意画出图形,然后再证明.几何的画图对初中学生来说是一个难点,因此我在这里分两步完成:首先,要求学生画图,在学生的画图过程中,教师发现错误及时给予纠正;然后引导学生学会根据已知条件巧妙构造三角形后运用三角形的中位线定理解题,并注意几何论证的规范表达,让学生感受成功的喜悦,增强学好数学的信心. 4、交流小结

在小结中,我设计了两个问题:你感悟到什么?还有什么疑惑?“悟”的设置是让学生回顾课堂中学到的知识,并畅谈由此受到的启发,在倾听学生的声音同时注意适时的归纳总结,合作小结有助于训练学生概括归纳能力,又有助于学生在归纳过程中把所学的知识条理化、系统化;“惑”的设置是希望学生对所学知识进一步深化,并注重对知识的迁移与拓展,这样可以增强学生学习过程中的反思意识,培养了他们良好的学习习惯,也为师生提供了再次讨论、进一步交流的机会. 5、作业布置

我设计了分层作业,必做题是巩固课堂学习成果,选做题有助于激发学生自主探究的热情,使不同层次的学生都能有所收获.

五、教学反思

通过本节课的学习,学生能较好地掌握三角形的中位线定理,并能灵活运用三角形的中位线定理进行计算和论证,达到了预期的教学目标.

根据课程标准的指导思想,本着“思路让学生想,疑难让学生议,规律让学生找,结论让学生得,小结让学生讲”的原则,在教学过程中我力求做到三个“注重”:

1、注重对学生几何学习兴趣的培养.兴趣是最好的老师.怎样才能激发学生兴趣,调动学习积极性呢?我在本课的开头巧妙设计了实验操作,通过学生的动手操作和合作探索激发学生学习的热情,互相交流得出结论. “为什么是平行四边形呢?”,“D是AB的什么点呢?”,通过一些问题的有效设问,不断激起学生的认知冲突,激发学生新的学习动机,达到“随风潜入夜,润物细无声”的作用,使新课知识的探索自然而然的发生,使学生从“感兴趣”自然进入数学知识的探究,达到培养思维能力的效果.

2、注重学生学习的过程,注重对学生探究能力的培养.在认识了三角形中位线的概念之后,不是直接提出三角形中位线定理后再证明,而是先让学生猜测,再

7

通过《几何画板》演示,让学生从动态中去观察、探索、归纳知识,形成自己的经验、猜想,产生对结论的感知,实现对知识意义的主动建构,让学生学会学习,学会探索问题的方法,培养学生的能力.”受之以鱼,不如授之以渔”这才是中学教育的真正目标.教学过程中,注重学生探究能力的培养,还课堂给学生,让学生去亲身体验知识的发生过程,拓展学生的创造性思维.同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想.

3、注重师生互动、生生互动.教学过程中,我力求让学生动起来,充分展现做中学. 学生“动”起来,课堂才能“活”起来.,在实验操作、猜测论证、巩固练习等环节中,我引导学生在独立思考、自主探索的基础上,大胆与同学进行合作与交流,让学生在与他人交流的过程中学会用不同的方式探索和思考问题,同时我适时参与、启发、点拨、纠偏,来培养学生的分析问题和解决问题的能力.真正体现“以学生为主体,教师为主导”的教学原则.

总之,我感到整节课的教学流畅,能够在较轻松活跃的课堂气氛中完成了教学计划,而且也能在很大程度上激发了学生的学习兴趣.但我也在想,如果能有时间在课堂上与学生继续探讨三角形的中位线定理证明的其他方法,这样更能活跃学生的思维,开阔学生思路,从而提高学生分析问题和解决问题的能力.

8

因篇幅问题不能全部显示,请点此查看更多更全内容