您的当前位置:首页正文

锂电锦囊从设计至分析

2021-03-06 来源:爱go旅游网
锂离子电池原理及工艺流程

一、 原理 1.0 正极构造

LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造

石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0工作原理 3.1 充电过程

如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为

LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为

6C+XLi++Xe=====LixC6 3.2 电池放电过程

放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二、 工艺流程

电池基本知识及生产控制

一、电芯原理

锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示:

二、电芯的构造

电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。

根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。 三、电芯的安全性

电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( >4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。电位变化见下图:

在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制: 1.负极材料的处理

1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。

2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。 2.制浆工艺的控制

1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。

2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。

3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。

3.采用先进的极片制造设备

1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。 2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。 3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。 4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。 4.先进的封口技术

目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素: 1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。 2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。

3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。 四、电芯膨胀原因及控制

锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因: 1.锂离子嵌入带来的厚度变化

电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。

2.工艺控制不力引起的膨胀

在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常 敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。 五、铝壳电芯与钢壳电芯安全性比较

铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:

注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可

见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448。 第三节 锂离子电池保护线路(PCM)

由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就因而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言: 过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。

过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。

过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6 过电流及短路电流

因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。 过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为: V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)。 假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A。 同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。

通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。 三、 电池不良项目及成因: 1.容量低 产生原因:

a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好;

g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透) j. 分容时未充满电; k. 正负极材料比容量小。

2.内阻高 产生原因:

a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖板虚焊; d. 负极耳与盖帽虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液锂盐含量低; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因:

a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全);

c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯); e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚

产生超厚的原因有以下几点:

a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点

a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低; d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸

a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路 7.短路

a. 料尘; b. 装壳时装破; c. 毛刺; d. 卷绕不齐; e. 没包好; f. 隔膜有洞; 8.断路

a) 极耳与铆钉未焊好,或者有效焊点面积小;

b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下)

四、 各工序控制重点 (一) 配料: 1.溶液配制:

a) PVDF(或CMC)与溶剂NMP(或去离子水)的混合比例和称量; b) 溶液的搅拌时间、搅拌频率和次数(及溶液表面温度);

c) 溶液配制完成后,对溶液的检验:粘度(测试)\\溶解程度(目测)及搁置时间; d) 负极:SBR+CMC溶液,搅拌时间和频率。 2.活性物质:

a) 称量和混合时监控混合比例、数量是否正确;

b) 球磨:正负极的球磨时间;球磨桶内玛瑙珠与混料的比例;玛瑙球中大球与小球的比例; c) 烘烤:烘烤温度、时间的设置;烘烤完成后冷却后测试温度。 d) 活性物质与溶液的混合搅拌:搅拌方式、搅拌时间和频率。 e) 过筛:过100目(或150目)分子筛。 f) 测试、检验:

对浆料、混料进行以下测试:固含量、粘度、混料细度、振实密度、浆料密度。 (二)涂布 1.集流体的首检:

a) 集流体规格(长宽厚)的确认; b) 集流体标准(实际)重量的确认;

c) 集流体的亲(疏)水性及外观(有无碰伤、划痕和破损)。 2.敷料量(标准值、上、下限值)的计算:

a) 单面敷料量(以接近此标准的极片厚度确定单面厚度);

b) 双面敷料量(以最接近此标准的极片厚度确定双面的极片厚度。) 3.浆料的确认:是否过稠(稀)\\流动性好,是否有颗粒,气泡过多,是否已干结. 4.极片效果:

a) 比重(片厚)的确认;

b) 外观:有无划线、断带、结料(滚轮或极片背面)是否积料过厚,是否有未干透或烤焦,有无露铜或异物颗粒;

5.裁片:规格确认有无毛刺,外观检验。 (三)制片(前段): 1.压片:

a) 确认型号和该型号正、负极片的标准厚度;

b) 最高档次极片压片后(NO.1或NO.1及NO.2)的厚度、外观有无变形、起泡、掉料、有无粘机、压叠。

c) 极片的强度检验; 2.分片:

a) 刀口规格、大片极片的规格(长宽)、外观确认; b) 分出的小片宽度;

c) 分出的小片有无毛刺、起皱、或裁斜、掉料(正)。 3.分档称片: a) 称量有无错分;

b) 外观检验:尺寸超差(极片尺寸、掉料、折痕、破损、浮料、未刮净等)。 4.烘烤:

a) 烤箱温度、时间的设置;

b) 放N2、抽真空的时间性效果(目测仪表)及时间间隔。 (四)制片后段:

1.铝带、镍带的长度、宽度、厚度的确认; 2.铝带、镍带的点焊牢固性;

3.胶纸必须按工艺要求的公差长度粘贴; 4.极片表面不能有粉尘。 (五)盖帽

1.裁连接片:测量尺寸规格、检查有无毛刺、压伤; 2.清洗连接片:检查连接片是否清洗干净;

3.连接片退火:检查有无用石墨粉覆盖,烤炉温度,放入取出时间; 4.组装盖帽:检查各种配件是否与当日型号相符,装配是否到位; 5.冲压盖帽:检查冲压高度及外观;

6.全检:对前工序员工自检检查的效果进行复核,防止不良品流入下一工序; 7.折连接片:检查有无漏折、断裂、有无折到位; 8.点盖帽:检查有无漏点、虚点、点穿;

9.全检:对前工序员工自检检查的效果进行复核,防止不良品流入下一工序; 10.套套管:检查尺寸、套管位置; 11.烘烤:烘烤温度、时间、烘烤效果。 (六)卷绕

1.各型号的识别、隔膜纸、卷尺的规格、钢(铝)壳的卷绕注意事项; 2.结存极片的标识状态;

3.点负极的牢固度(钢、铝壳);铝壳正极的牢固性、负极的外观; 4.绝缘垫片的放置;

5.折、压合盖帽(铝壳)注意杂物外露和铝壳外观的维护;

6.定盖工位:偏移度。 ?注意先下拉先生产。 (七)焊接

1.钢、铝壳电池焊接时注意沙孔; 2.焊接铝壳的调试、焊接时抽查的测试; 3.检漏工位; 4.打胶。

?注意先下拉先生产。 (八)注液

1.各种型号注液量;

2.手套箱内的湿度和室内湿度; 3.电池水分测试及放气和抽真空时间; 4.烘烤前电池在烤箱放置注意事项; 5.烘烤12小时后电池上下层换位; 6.电池注液前后的封口。 (九)检测

1.分容、化成参数的设置;

2.化成时电解液流出,员工有没有及时擦掉; 3.监督生产部新员工的操作;

4.注液组下来的电芯上注液孔是否有胶纸脱落; 5.各种实验电池是否明显标识区分; 6.提前亮灯的点要查明原因; 7.爆炸后该点的校对; 8.钢、铝壳柜的区分;

9.封口时哪些型号要倒转来挤压 10.封口挤压是否使铝电芯变形; 11.封口后上否及时清洗;

12.夹具头是否清洁,是否有锈蚀;

13.连接电脑的柜子爆炸后电压的查询,该点电压电流曲线的情况汇的; 14.搁置、老化和封口区的环境温湿度。 (十)包装

1.对有的客户抱怨过容量低的要加2分钟容量; 2.对天宇这个客户要控制尺寸的下限;

3.型号电池更改时是否清理整条拉,防止混料;

4.检出的不良品是否用红色周转盒子装,是否明显标识; 5.订单上有特别要求的是否得到员工的理解和执行; 6.喷码内容是否正确,喷码方向和位置是否正确; 7.压板和铆钉上是否有胶;

8.检测仪器是否在有效期内,防止失准仪器在线上使用(针对所有工位)。

化学电源的组成

化学电源在实现能量的转换过程中,必须具有两个必要的条件:

一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。

二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。

为了满足以上的条件,任何一种化学电源均由以下四部分组成:

1、 电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1) 组成电池的电动势高;

2) 电化学活性高,即自发进行反应的能力强; 3) 重量比容量和体积比容量大; 4) 在电解液中的化学稳定性高; 5) 具有高的电子导电性; 6) 资源丰富,价格便宜。

2、 电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是:

1) 稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;

2) 比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。

3、 隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是:

1) 在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用;

2) 离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小;

3) 应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长;

4) 材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。

因篇幅问题不能全部显示,请点此查看更多更全内容