您的当前位置:首页正文

两道数学题

2020-10-19 来源:爱go旅游网


两道数学题

92.(2013•晋江)如图10,在平面直角坐标系xoy中,一动直线l从y轴出发,

以每秒1个单位长度的速度沿x轴向右平移,直线l与直线yx相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线

l的运动时间为t秒.

(1)填空:当t1时,⊙P的半径为 ,OA ,OB ; (2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平

行四边形.

①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)

②当点C在直线yx上方时,过A、B、C三点的⊙Q与y轴的另一个 ..交点为点D,连接DC、DA,试判断DAC的形状,并说明理由.

l y B P O A y y=x B l y=x P x O A x (图10) (备用图)

解:(1)2,OA2,OB2;

(2)符合条件的点C有3个,如图10-1,分别为C1(t,3t)、

C2(t,t)、C3(t,t);

(3) DAC是等腰直角三角形.理由如下:

当点C在第一象限时,如图10-2,连接DA、DC、PA、AC. 由(2)可知,点C的坐标为(t,3t),由点P坐标为(t,t),点A坐 标为(2t,0),点B坐标为(0,2t),可知OAOB2t,OAB 是等腰直角三角形,又POPB,进而可得OPB也是等腰 直角三角形,则POBPBO45. AOB90, AB为⊙P的直径, A、P、B三点共线, 又BC//OP,

CBEPOB45,

ABC180CBEPBO90,

y ECy=x BQDPOAx (图10-2) AC为⊙Q的直径, DADC

CDEADO90

过点C作CEy轴于点E,则有DCECDE90, y y=x BADODCE

RtDCE∽RtADO

PECDEt3tODCE即 ODAOOD2tQ解得ODt或OD2t O依题意,点D与点B不重合, 舍去OD2t,只取ODt

DEC图10-3 1即相似比为1,此时两个三角形全等, OD则DCAD

DAC是等腰直角三角形.

当点C在第二象限时,如图10-3,同上可证DAC也是等腰直角三角形.

Ax 综上所述, 当点C在直线yx上方时, DAC必等腰直角三角形.

15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2. 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;

(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

y C A O M B x D 图12

15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);

则设抛物线的解析式为ya(x1)(x3)(a≠0)

又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1

2

∴y=x-2x-3 ················································································································· 3分 自变量范围:-1≤x≤3 ································································································ 4分

解法2:设抛物线的解析式为yax2bxc(a≠0)

根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上

abc0a1 ∴9a3bc0,解之得:b2

c3c3∴y=x-2x-3·························································································· 3分

自变量范围:-1≤x≤3 ······································································ 4分

(2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM, 在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=3 在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4

∴点C、E的坐标分别为(0,3),(-3,0) ·························································· 6分

2

∴切线CE的解析式为y3x3 ···································································· 8分 3y

A B x M O E

D

解图12

(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) ·································· 9分

由题意可知方程组ykx3只有一组解 2yx2x3C 即kx3x22x3有两个相等实根,∴k=-2 ···················································· 11分

∴过点D“蛋圆”切线的解析式y=-2x-3 ····························································· 12分

因篇幅问题不能全部显示,请点此查看更多更全内容