您的当前位置:首页正文

主成分分析Stata 命令

2023-10-29 来源:爱go旅游网


Stata 命令

1主成分估计

Stata可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。

(1)sysuse auto,clear

pca trunk weight length headroom

pca trunk weight length headroom, comp(2) covariance

(2)webuse bg2,clear

pca bg2cost*, vce(normal)

2 Estat

estat给出了几个非常有用的工具,包括KMO、SMC等指标。

Kaiser-Meyer-Olkin(KMO),是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:0.00-0.49,

不能接受(unacceptable);0.50-0.59,非常差(miserable);0.60-0.69,勉强接受(mediocre);0.70-0.79,可以接受(middling);0.80-0.89,比较好(meritorious);0.90-1.00,非常好(marvelous)。

SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

根据KMO越高,表明变量的共性越强和SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。

webuse bg2,clear

pca bg2cost*, vce(normal)

estat anti

estat kmo

estat loadings

estat residuals

estat smc

estat summarize

3 预测

Stata可以通过predict预测变量得分、拟合值和残差等。

webuse bg2,clear

pca bg2cost*, vce(normal)

predict score fit residual q (备注:q代表残差的平方和)

4 碎石图

碎石图是判断保留多少个主成分的重要方法。命令为screeplot。

webuse bg2,clear

pca bg2cost*, vce(normal)

screeplot

Scree plot of eigenvalues after pca2Eigenvalues1.5.51123Number456 5 得分图、载荷图

得分图即不同主成分得分的散点图。命令为scoreplot。

webuse bg2,clear

pca bg2cost*, vce(normal)

scoreplot

Score variables (pca)4Scores for component 2-4-6-202-4-20Scores for component 124 载荷图即不同主成分载荷的散点图。命令为loadingplot。

webuse bg2,clear

pca bg2cost*, vce(normal)

loadingplot

Component loadings.6bg2cost1.5Component 2bg2cost3bg2cost2.4bg2cost5bg2cost6.3bg2cost4-.4-.20.2Component 1.4.6 (资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

因篇幅问题不能全部显示,请点此查看更多更全内容