您的当前位置:首页正文

建筑幕墙的设计方法及原则

2023-05-19 来源:爱go旅游网
1、建筑幕墙的设计方法及原则

近年来,根据国家有关部门的要求,我国土木工程界全面开展了工程结构可靠度设计标准的 编制。以概率理论为基础的极限状态设计法取代以经济为主的定值表达容许应力设计法。由 于 建筑结构设计的标准是在正常荷载作用下不产生损害,在这种情况下,幕墙亦处于弹性状态 ,因此,其构件的内力计算应采取弹性计算方法进行。鉴于幕墙承受多种荷载和作用,产生 内力情况相当复杂,采用承载力表达式不很方便,故用分项系数的设计表达式进行计算: σ=k1Sσkfkk2=fσ≤f(1)

式中:σ为应力设计值,亦为应力标准值乘以大于1的系数k1,通过效应组合得到;f为强 度设计值,由强度标准值fk除以大于1的系数k2得到;结构安全度k=k1×k2。在《 玻璃幕墙工程技术规范》中,玻璃的安全度k=2.5;铝合金型材的安全度k=1.8;在进行幕 墙构件、连接件和锚固件承载力计算时,荷载和作用的分项系数分别是:对于重力荷载,γ G为1.2;对于风荷载,γW为1.4;对于地震作用,γE为1.3;对于温度作用,γT 为1.2。在进行幕墙构件变形、挠度和位移验算时,分项系数均采用1.0;荷载和作用效应可 按下列方式组合:S=γGSG+ΦWγWSW+ΦEγESE+ΦTγTST(2)式中:S为荷载和作用 效 应组合设 计值;SG为重力作为不变荷载产生的效应;SW,SE,ST为风荷载、地震作用和温度 作用作为可变荷载和作用产生的效应;γG,γW,γE,γT为各效应的分项系数; ΦW,ΦE,ΦT分别为风荷载、地震作用和温度作用产生效应的组合系数。

例如有下列典型组合:1.2FG+1.0×1.4FW+0.6×1.3FE+0.2×1.2FT;1.2FG+1.0×1.4FW+0.6×1.32FE+0.2×1.3FT。其中,FG,FW,FE,FT分别代 表重力荷载、风荷载、地震作用和温度作用产生的应力或内力。 作用在建筑幕墙上的荷载主要有:

①结构自重。结构自重为材料的重力体积密度与该材料体 积之乘积。考虑材料规格尺寸的偏差及其附属性构造零件,其荷载分项系数为γG=1.2。

②风荷载。作用在幕墙上的风荷载标准值可按下式计算,并且不应小于1.0kN/m2:WK= βOμZμSωO(3)式中:WK为作用于建筑幕墙上的风荷载标准植;βO为阵 风系数,根据我国采用风压转换成为3s瞬时风速的变换系数1.5,风压与风速平方成正比, 故βO=1.52=2.25;μS为风荷载的体型系数,竖直建筑幕墙外表面可按±1.5取值; μZ为风压高度比系数,按《高层建筑结构设计与施工规程》取值,对于B类地区,按μZ=(H10)式进行计算;H为幕墙高度;ωO为基本风压值, 按《建筑结构荷载规范》取值。③地震作用:QE=βEαGA(4)式中:QE为作用于幕墙平面外的水平地震作用(kN/m2);G为幕墙构件(含玻璃 铝框)的事力(kN);A为幕墙面积(m2);α为水平地震影响系数最大值,6度抗震 设计时取0.04,7度抗震设计时取0.08,8度抗震设计时取0.16;βE为动力放大系数, 可取为3.0。 2、膨胀螺栓的应用设计

根据《玻璃幕墙工程技术规范》JGJ02-96的要求:玻璃幕墙立柱与混凝土结构宜通过预埋件连接,预埋件应在主体结构混凝土施工时埋入。在没有条件采用预埋件连接措施时,应采用可靠的连接措施并应通过试验决定其承载力。

但是在实际工程施工中,由于预埋件的偏移,原来没有预埋件及旧建筑物的外装修而采用不同规格的膨胀螺栓,施工单位在设计过程中,大部分膨胀螺栓的握裹力设计值偏小,主要体现在:在各种荷载设计过程中,各种分项系数取值偏小,或不采用分项系数。 在膨胀螺栓受拉力计算时,简单地将立柱受的拉力除以所用螺栓的个数,得每处螺栓所受的拉力来进行强度检验。 笔者认为,以上算法是错误的。《玻璃幕墙工程技术规范》JGJ02-96明确规定:膨

1

胀螺栓是后置连接件,工作可靠性较差,只在不得已时作为辅助、补救措施,不作为连接的常规手段 ,必须确保安全,留有余地,按计算只需1个膨胀螺栓就够,实际上设置2~4螺栓。

按规定,螺栓只是在立柱与预埋件之间进行连接。对于预埋件,其锚筋的总截面面积A,按 下列公式计算:A≥Vαγαvfy+N0.8αgfy+MαγαbfyZ(5)A≥N0.8αgfy+ MαγαbfyZ(6)式中:αv,αb系数应按下列公式计算: αv=(4.0-0.8d)fe/fy(7)当αv>0.7时,取αv=0.7,αb=0.4+0.25td(8)式中:V为剪力设计值;N为法向拉力;M为弯矩值 ;Z为外层锚筋中心线间的距离;αγ为钢筋层数影响系数,当等间距配置时,2层取1.0,3层取0.9;αv为锚筋受剪承载力系数;d为锚筋直径;αb为错板弯曲变形折减系数 ;fy为钢筋抗拉强度设计值;fc为混凝土轴心抗压强度值;t为锚板厚度。

点式玻璃幕墙是近年来新出现的一种支承方式。点式玻璃幕墙它的全称为金属支承结构点式玻璃幕墙但一经出现,在城市发展很快。下面对这种较新型的支承方式作一介绍:

形式

按照支承结构的不同方式,点式玻璃幕墙在形式上可分为以下几种: (1)金属支承结构点式玻璃幕墙这是目前采用最多的一种形式,它是用金属材料做支承结构体系,通过金属连接件和紧固件将面玻璃牢固地固定在它上面,十分安全可靠。充分利用金属结构的灵活多变以满足建筑造型的需要,人们可以透过玻璃清楚地看到支承玻璃的整个结构体系。玻璃的晶莹剔透和金属结构的坚固结实,“美”与“力”的体现。增强了“虚”、“实”对比的效果。 (2)全玻璃结构点式玻璃幕墙通过金属连接件及紧固件将玻璃支承结构(玻璃肋)与面玻璃连成整体,成为建筑围护结构。施工简便造价低,玻璃面和肋构成开阔的视野,使人赏心悦目,建筑物室内、外空间达到最大程度的视觉交融。 (3)拉杆(索)结构点式玻璃幕墙采用不锈钢拉杆或用与玻璃分缝相对应拉索做成幕墙的支承结构。玻璃通过金属连接件与其固定。在建筑中充分运械加工的精度,使构件均为受拉杆件,因此,施工时要加以预应力,这种柔接可降低震动时玻璃的破损率。

支撑材料

考虑幕墙特点与建筑物寿命的关系,应符合下列规定: 1 立柱截面主要受力部位的厚度,应符合下列要求: 1)铝型材截面开口部位的厚度不应小于3.0mm,闭口部位的厚度不应小于2.5mm;型材孔壁与螺钉之间直接采用螺纹受力连接时,其局部厚度尚不应小于螺钉的公称直径。 2)钢型材截面主要受力部位的厚度不应小于3.0mm。 3)对偏心受压立柱,其截面宽厚比应符合JGJ102-2003《玻璃幕墙工程技术规范》第6.2.1 条的相应规定

玻璃

1 玻璃幕墙应采用反射比不大于0.30的幕墙玻璃,对有采光功能要求的玻璃幕墙,其采光折减系数不宜低干0.20。 2 框支承玻璃幕墙,宜采用安全玻璃。 3 点支承玻璃幕墙的面板玻璃应采用钢化玻璃。 4 采用玻璃肋支承的点支承玻璃幕墙,其玻璃肋应采用钢化突层玻璃。 5 人员流动密度大、青少年或幼儿活动的公共场所以及使用中容易受到撞击的都位,其玻璃幕墙应采用安全玻璃;对使用中容易受到撞击的部位,尚应设置明显的警示标志。

节点维护

幕墙节点是幕墙与楼板连接的主要附件。为了防腐必须进行表面处理,一般对于 A 3 钢采取表面镀锌,安装后再涂表面防锈铁红底漆。楼板不进行封修的节点可随时检查,发现腐蚀可以进行局部打磨后再进行涂漆,如有螺栓松动,重新拧

2

紧。楼板封修的可定期检查(时间为二年一次)。局部检查,如发现问题全部检查,并进行防腐处理。

1.雷电对玻璃幕墙高层建筑的危害 众所周知,雷电是天空云层中一种自然的放电现象,雷电流是一种强度极大,作用时间极短的瞬变过程。雷电击中建筑物时,通常会产生电效应、热效应和机械力。雷电流在瞬间释放出的巨大能量,会把被击中金属熔化,使物体水份受热膨胀,产生强大的机械力,或者分解成氢气和氧气,产生爆炸,使建筑物遭到破坏,甚至雷电的高温引起建筑物燃烧构成火灾和引起触电。高层或超高层建筑玻璃幕墙使地表的电场分布发生了严重的畸变,其电场强度比一般建筑物大得多,容易构成雷电发展条件,加上离放电云层近,所以易遭受雷击。 高层建筑玻璃幕墙围护高层建筑物后,建筑物防雷装置由于玻璃幕墙的屏蔽效应,不能直接起到接闪和防雷作用,闪电对建筑的雷击往往变成闪电对玻璃幕墙的雷击。同时高层建筑玻璃幕墙的金属材质由于雷电的效应,将会产生静电感应作用,当天空雷云和大地形成电场时,幕墙的金属体就会积聚与雷云极性相反的大量感应电荷,当雷云瞬间放电后,云与大地的电场忽然消失,这时幕墙的金属体感应电荷不能以相应的速度流散,将会产生高达万伏以上的对地电位,这就是静电感应电压,对人和设备产生危害。 高层建筑幕墙通常超过50m, 超高层幕墙超过100m,如果强大的雷电流全程通过幕墙构件时,由于持续时间极短,只有几十微秒,则每米的电位差可达万伏以上,高达100m的幕墙,在通过雷电流时可达百万伏的电位差,将会和周围的金属体之间产生反击放电和电磁感应。

2.玻璃幕墙防雷措施 通常建筑物的防雷装置有三部分:接闪器、引下线和接地装置。在玻璃幕墙的防雷设计中,应充分利用建筑物的这些装置,将幕墙竖向龙骨、横向龙骨和建筑物防雷网接通,连成一个防雷整体,把玻璃幕墙获得的巨大雷电能量,通过建筑物的接地系统,迅速地输送到地下,保护玻璃幕墙和建筑物免遭雷电破坏的作用。 高层建筑玻璃幕墙的顶部的女儿墙的盖板,是人为地设立的良好导体,它沿建筑物女儿墙的顶部分布,其电场强度很大。雷电先驱很自然地被吸引过来,是雷击率最大的部位。作为防止雷击的直击措施,可将盖板设计成直接接受雷击的装置,起到引雷作用的接闪器。其作用在于接受雷电流,同时又安全地把雷电流与建筑物防雷网接通,并导通入地达到避雷作用。 高层建筑幕玻璃墙顶部的接闪器,不能防止电流的侧面横向发展绕击作用。目前防止侧击雷的常见做法是在30m以上的高层建筑玻璃幕墙部位,每三层设置一圈均压环,并和建筑物防雷网及玻璃幕墙自身的防雷体系接通。

3.玻璃幕墙的防雷接地要求及施工方法 3.1根据有关防雷接地的技术资料并结合以往竣工工程的经验,我们认为玻璃幕墙防雷必须在以下几个重要方面满足要求: 3.1.1玻璃幕墙的防雷设计应符合现行国家标准《建筑物防雷设计规范》(GB500057-94)的有关规定。 3.1.2引下线截面应符合要求 玻璃幕墙竖向主龙骨应视为引下线,竖向主龙骨的跨接用扁钢制品时截面必须达到100mm²。 3.1.3满足机械强度的要求 除焊接方式以外,采用压接方

式其金属材料厚度应达到4mm。 3.1.4采用焊接方式要满足施工规范的要求 圆钢搭接长度为其直径的6倍,且双面施焊;扁钢搭接长度为其宽度的2倍,且三面施焊;焊接处做防腐处理。 3.1.5不同金属压接,要做防电化腐蚀处理。如:钢与铝连接时,钢要镀锡;或在钢、铝之间加不锈钢垫片。 3.1.6施工完成后,要有权威检测机构进行检测,必须达到设计和规范要求的接地电阻值。 3.2某大厦玻璃幕墙防雷接地的作法 该大厦地上22层,高80米,外墙使用大面积花

岗岩挂板、玻璃幕墙及复合铝板。下面说明其玻璃幕墙防雷接地具体作法: 3.2.1从六层开始,九层、十二层、十五层直至二十二层,每三层在建筑物四周结

3

构楼板表面敷设一根40×4镀锌扁钢,并与建筑物四周防雷引下线的引出钢筋(Φ12)焊接,焊接长度为圆钢直径的6倍,双面施焊、焊接处刷两道防锈漆(以后焊接处均刷两道防锈漆),从而形成一道均压环。为使玻璃幕墙竖向铝合金主龙骨保持接地的贯通,用40×4镀锌扁钢一端与均压环焊接,焊接长度应为其宽度的2倍,并三面施焊,另一端用两个M8不锈钢对穿螺栓与竖向主龙骨进行压接,为防止镀锌扁钢与铝合金的电化学腐蚀,在其间加垫1mm厚不锈钢垫片,并加不锈钢平垫和弹簧垫。 3.2.2所有竖向主龙骨的连接处采用40×4铝合金制成的可伸缩的“欧姆弯”进行压接,连接处上下各用两个M8不锈钢对穿螺栓进行压接,并加不锈钢平垫和弹簧垫。 3.2.3设置均压环的楼层所有竖向主龙骨与横向龙骨的连接处,通过40×4铝角码两端各用两个M6不锈钢对穿螺栓进行压接,并加不锈钢平垫和弹簧垫。 3.2.4幕墙顶部女儿墙的盖板是起到引雷作用的接闪器。用φ12镀锌圆钢沿女儿墙周圈安装,并与主体结构防雷引下线焊接。在盖板内侧安装40×4×4镀锌角钢,每块铝板安装两段角钢(每段长300mm),两段之间用φ12镀锌圆钢焊接连通。并用φ12镀锌圆钢一端与女儿墙顶φ12镀锌圆钢焊接,另一端与角钢焊接。每段角钢与铝板之间用四个M6×20不锈钢自攻螺丝压接(角钢与铝板之间加垫1mm厚不锈钢垫片),并加不锈钢平垫和弹簧垫。

4

因篇幅问题不能全部显示,请点此查看更多更全内容