无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。
图1 无功功率补偿原理图 S1为功率因数改善前的视在功率 S2为功率因数改善后的视在功率
2 无功的经济补偿
对于电力系统而言,在高压侧或低压侧均可进行补偿。但是,如果在低压侧进行补偿,既可减少变压器、输电线路等的损耗,又可提高变压器、输电线路的利用率及提高负载端的端电压,所以补偿电容器的安装越靠近负载端,对用户而言越可获取较大的经济效益。由图1可见,装设补偿电容器后,改善了负荷侧的功率因数,用电负荷所需的无功功率,由电容器直接提供,可以降低电网的总电流
式中 I--视在电流 Ip--有功电流 Ic--电容电流
因为在低压侧装设了电容器补偿无功电流,即无功电流由电容器提供,所以在进行电网设计时,只考虑有功电流即可,大大节省变压器及输电线路的投资。对于已有的电网,也能够提高电网的出力。 2.1 减少输电线路及变压器的损耗 Pn=3I2²R =3I2p²R+3I2q²R 式中 Pn--有功功率损失
R--每项输电线路的电阻(含输电线路及变压器) 输电线路电阻R=KL/A 式中 K--电阻系数 A--导线截面积 L--导线长度,m 变压器电阻R=YkU/Sn
式中 Yk--变压器短路阻抗,Ω U--系统电压,V
Sn--变压器额定容量,kVA
2.2 增加变压器及输电线路的利用率 所增加的利用率为:
(P2-P1)/P1=[(cos1-cos2)-1]³100% 式中 cosφ1--改善前的功率因数 cosφ2--改善后的功率因数
2.3 提高系统的端电压减少系统的电压降 du(%)=Qc/Sn³Xk(%)
式中 du(%)--电压提高百分比
2
Qc--补偿电容器的容量,kvar Sn--变压器容量,kVA Xk(%)--变压器阻抗百分比 3 无功补偿方式
理论上而言,无功补偿最好的方式是在哪里需要的无功,就在哪里补偿,整个系统将没有无功电流的流动。但在实际电网当中这是不可能做到的。因为无论是变压器、输电线路还是各种负载,均会需要无功。所以实际电网当中就补偿装置的安装位置而言有如下几种补偿方式:①变电所集中补偿;②配电线路分散补偿;③负荷侧集中补偿;④用户负荷的就地补偿。
对于低压配网无功补偿,通常采用负荷侧集中补偿方式,即在低压系统(如变压器的低压侧)利用自动功率因数调整装置,随着负荷的变化,自动地投入或切除电容器的部分或全部容量。 3.1 补偿容量的确定
考虑到动力类负荷,估计配变的功率因数在0.75左右,设计在满负荷状态下功率因数提高到0.90。
假设配变容量为S,补偿前有功功率、无功功率和功率因数角分别为P1、Q1、和φ1,补偿后有功功率、无功功率和功率因数角分别为P2、Q2和φ2,Qb为需补偿的容量。
由此可得出应补偿的容量为: Qb=Q1-Q2
=S³sinφ1-S³sinφ2 =S³(0.661-0.436) =0.225S
补偿百分比为:η%=Qb/S³100%=22.5%
根据电网的运行经验可以得出,补偿容量一般为变压器额定容量的20%~30%。
3.2 补偿方式的选择
补偿方式分为三相共补、分相补偿和混合补偿(即共补加分补),一般而言当需要补偿的容量超过60kvar时,采用混合补偿是比较合适的,即可照顾到三相之间的不平衡,与分相补偿的效果完全相同,又可以降低成本。 3.3 补偿级数的选择
补偿级数(即补偿电容器的分组数量)越多,补偿的精度越高,但随着补偿级数的增加,装置的成本会大幅度提高,而且箱壳的体积也会增大。综合考虑补偿精度、成本、箱体体积等因素,我们建议采用11级非常容量补偿,前9级为等容量以满足基本补偿,后2级为小容量以提高补偿精度。以1台180kvar的补偿装置为例:①前9级为每级18kvar,9³18=162kvar;②后2级为每级9kvar;9³2=18kvar,合计180kvar。 3.4 投切控制方式的选择
为了尽可能地减小装置的体积,简化结构,提高装置的可靠性,即将电容器按一定容量比进行分组,通过控制器的软件对这些电容器组进行排列组合投切。 3.5 控制目标的选择
通常的控制目标为:功率因数、无功功率、无功电流、电压。根据具体情况,以挖掘配变的容量为主要目的,所以电压不应该成为控制目标。以功率因数为检测量,缺点是轻载时容易产生投切振荡,重载时补偿不充分;以无功功率为检测量,则检测量和控制目标量相同,检测精度低。所以应采用无功电流为检测量,无功功率为控制目标。 4 无功补偿装置的安装
对于箱式变在设计时应考虑无功装置及其安装位置,而对于公共杆变,可选用柜(箱)式低压无功补偿装置地面式安装,装置的底部加升高座,以便于进线。 许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的\"无功\"并不是\"无用\"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。
在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:
cosφ=P/S=P/(P2+Q2)1/2
在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。
1 影响功率因数的主要因素
(1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。
(2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。
(3)供电电压超出规定范围也会对功率因数造成很大的影响。
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。 2 无功补偿的一般方法
无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。下面简单介绍这3种补偿方式的适用范围及使用该种补偿方式的优缺点。 (1)低压个别补偿:
低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。 (2)低压集中补偿:
低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 (3)高压集中补偿:
高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。 3 采取适当措施,设法提高系统自然功率因数
提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。
(1)合理使用电动机;
(2)提高异步电动机的检修质量;
(3)采用同步电动机:同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功功率取决于转子中的励磁电流大小,在欠励状态时,定子绕组向电网\"吸取\"无功,在过励状态时,定子绕组向电网\"送出\"无功。因此,对于恒速长期运行的大型机构设备可以采用同步电动机作为动力。
异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是\"异步电动机同步化\"。
(4)合理选择配变容量,改善配变的运行方式:对负载率比较低的配变,一般采取\"撤、换、并、停\"等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。 4 无功电源
电力系统的无功电源除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这4种装置又称为无功补偿装置。除电容器外,其余几种既能吸收容性无功又能吸收感性无功。 (1)同步电机:
同步电机中有发电机、电动机及调相机3种。 ①同步发电机:
同步发电机是唯一的有功电源,同时又是最基本的无功电源,当其在额定状态下运行时,可以发出无功功率: Q=S³sinφ=P³tgφ
其中:Q、S、P、φ是相对应的无功功率、视在功率、有功功率和功率因数角。
发电机正常运行时,以滞后功率因数运行为主,向系统提供无功,但必要时,也可以减小励磁电流,使功率因数超前,即所谓的\"进相运行\",以吸收系统多余的无功。
②同步调相机:
同步调相机是空载运行的同步电机,它能在欠励或过励的情况下向系统吸收或供出无功,装有自励装置的同步电机能根据电压平滑地调节输入或输出的无功功率,这是其优点。但它的有功损耗大、运行维护复杂、响应速度慢,近来已逐渐退出电网运行。 ③并联电容器:
并联电容器补偿是目前使用最广泛的一种无功电源,由于通过电容器的交变电流在相位上正好超前于电容器极板上的电压,相反于电感中的滞后,由此可视为向电网\"发?quot;无功功率: Q=U2/Xc
其中:Q、U、Xc分别为无功功率、电压、电容器容抗。
并联电容器本身功耗很小,装设灵活,节省投资;由它向系统提供无功可以改善功率因数,减少由发电机提供的无功功率。 ④静止无功补偿器:
静止无功补偿器是由晶闸管所控制投切电抗器和电容器组成,由于晶闸管对于控制信号反应极为迅速,而且通断次数也可以不受限制。当电压变化时静止补偿器能快速、平滑地调节,以满足动态无功补偿的需要,同时还能做到分相补偿;对于三相不平衡负荷及冲击负荷有较强的适应性;但由于晶闸管控制对电抗器的投切过程中会产生高次谐波,为此需加装专门的滤波器。 ⑤静止无功发生器:
它的主体是一个电压源型逆变器,由可关断晶闸管适当的通断,将电容上的直流电压转换成为与电力系统电压同步的三相交流电压,再通过电抗器和变压器并联接入电网。适当控制逆变器的输出电压,就可以灵活地改变其运行工况,使其处于容性、感性或零负荷状态。
与静止无功补偿器相比,静止无功发生器响应速度更快,谐波电流更少,而且在系统电压较低时仍能向系统注入较大的无功。 5 结束语
本文集中探讨了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的几种方法,还讨论了目前所通用的几种无功电源及其特点。这对供电企业是十分有益的。 1 无功补偿的基本原理
无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。
图1 无功功率补偿原理图 S1为功率因数改善前的视在功率 S2为功率因数改善后的视在功率
2 无功的经济补偿
对于电力系统而言,在高压侧或低压侧均可进行补偿。但是,如果在低压侧进行补偿,既可减少变压器、输电线路等的损耗,又可提高变压器、输电线路的利用率及提高负载端的端电压,所以补偿电容器的安装越靠近负载端,对用户而言越可获取较大的经济效益。由图1可见,装设补偿电容器后,改善了负荷侧的功率因数,用电负荷所需的无功功率,由电容器直接提供,可以降低电网的总电流
式中 I--视在电流
Ip--有功电流 Ic--电容电流
因为在低压侧装设了电容器补偿无功电流,即无功电流由电容器提供,所以在进行电网设计时,只考虑有功电流即可,大大节省变压器及输电线路的投资。对于已有的电网,也能够提高电网的出力。 2.1 减少输电线路及变压器的损耗 Pn=3I2²R =3I2p²R+3I2q²R 式中 Pn--有功功率损失
R--每项输电线路的电阻(含输电线路及变压器) 输电线路电阻R=KL/A 式中 K--电阻系数 A--导线截面积 L--导线长度,m 变压器电阻R=YkU2/Sn
式中 Yk--变压器短路阻抗,Ω U--系统电压,V
Sn--变压器额定容量,kVA
2.2 增加变压器及输电线路的利用率 所增加的利用率为:
(P2-P1)/P1=[(cos1-cos2)-1]³100% 式中 cosφ1--改善前的功率因数 cosφ2--改善后的功率因数
2.3 提高系统的端电压减少系统的电压降
du(%)=Qc/Sn³Xk(%)
式中 du(%)--电压提高百分比 Qc--补偿电容器的容量,kvar Sn--变压器容量,kVA Xk(%)--变压器阻抗百分比 3 无功补偿方式
理论上而言,无功补偿最好的方式是在哪里需要的无功,就在哪里补偿,整个系统将没有无功电流的流动。但在实际电网当中这是不可能做到的。因为无论是变压器、输电线路还是各种负载,均会需要无功。所以实际电网当中就补偿装置的安装位置而言有如下几种补偿方式:①变电所集中补偿;②配电线路分散补偿;③负荷侧集中补偿;④用户负荷的就地补偿。
对于低压配网无功补偿,通常采用负荷侧集中补偿方式,即在低压系统(如变压器的低压侧)利用自动功率因数调整装置,随着负荷的变化,自动地投入或切除电容器的部分或全部容量。 3.1 补偿容量的确定
考虑到动力类负荷,估计配变的功率因数在0.75左右,设计在满负荷状态下功率因数提高到0.90。
假设配变容量为S,补偿前有功功率、无功功率和功率因数角分别为P1、Q1、和φ1,补偿后有功功率、无功功率和功率因数角分别为P2、Q2和φ2,Qb为需补偿的容量。
由此可得出应补偿的容量为: Qb=Q1-Q2
=S³sinφ1-S³sinφ2 =S³(0.661-0.436) =0.225S
补偿百分比为:η%=Qb/S³100%=22.5%
根据电网的运行经验可以得出,补偿容量一般为变压器额定容量的20%~30%。
3.2 补偿方式的选择
补偿方式分为三相共补、分相补偿和混合补偿(即共补加分补),一般而言当需要补偿的容量超过60kvar时,采用混合补偿是比较合适的,即可照顾到三相之间的不平衡,与分相补偿的效果完全相同,又可以降低成本。 3.3 补偿级数的选择
补偿级数(即补偿电容器的分组数量)越多,补偿的精度越高,但随着补偿级数的增加,装置的成本会大幅度提高,而且箱壳的体积也会增大。综合考虑补偿精度、成本、箱体体积等因素,我们建议采用11级非常容量补偿,前9级为等容量以满足基本补偿,后2级为小容量以提高补偿精度。以1台180kvar的补偿装置为例:①前9级为每级18kvar,9³18=162kvar;②后2级为每级9kvar;9³2=18kvar,合计180kvar。 3.4 投切控制方式的选择
为了尽可能地减小装置的体积,简化结构,提高装置的可靠性,即将电容器按一定容量比进行分组,通过控制器的软件对这些电容器组进行排列组合投切。 3.5 控制目标的选择
通常的控制目标为:功率因数、无功功率、无功电流、电压。根据具体情况,以挖掘配变的容量为主要目的,所以电压不应该成为控制目标。以功率因数为检测量,缺点是轻载时容易产生投切振荡,重载时补偿不充分;以无功功率为检测量,则检测量和控制目标量相同,检测精度低。所以应采用无功电流为检测量,无功功率为控制目标。 4 无功补偿装置的安装
对于箱式变在设计时应考虑无功装置及其安装位置,而对于公共杆变,可选用柜(箱)式低压无功补偿装置地面式安装,装置的底部加升高座,以便于进线。 低压配电系统中装设漏电保护器是防止人身触电的有效措施,也可以防止因漏电而引发的电气火灾及设备损坏事故。漏电保护器一般分为一极、二极、三极、四极。其中一极、二极漏电保护器的结构原理图如图1-a、b所示,它们的主要区别在于当漏电事故发生时是否断开零线。其工作原理均为通过检测相线、零线电流的相量和是否为零来判定是否有漏电事故发生。本文所讨论的重点是三极、四极漏电保护器的工作原理与应用场合的差异。
笔者查阅一些厂家提供的三、四极漏电保护器结构原理图时发现一些问题,图分列如图2-a、b与图3-a、b所示,其中图2-a、b源自某国产品牌开关制造商产品资料,图3-a、b源自某进口品牌开关制造商产品资料。我们发现二者的四极漏电保护器的结构原理图并无区别,但三极漏电保护的结构原理图却存在重大不同,并由此引发其使用也有重大区别。
在分析之前,需要明确一个概念,即“负载三相平衡”。在三相交流电系统中,负载三相平衡时,其三相电流相量和为零。但笔者以为,所谓“负载三相平衡”是一个理论概念,在实际的产品制造中,由于生产工艺、使用条件及电源品质等因素的制约,理想的三相完全
平衡的负载不大可能存在,其三相电流ia、ib、ic的相量和不为零而且很容易达到漏电保护器的动作电流值例如30mA。因此,“负载三相平衡”这个概念只具理论意义。本文以下谈到三极、四极漏电保护器的应用时与此相关。 首先分析图2,图2-a、b中,二者的漏电动作原理相同。均是通过检测穿过零序电流互感器的3根相线和1根N线的电流相量和是否达到漏电保护器的动作电流值来决定其是否脱扣。对于正常工作的三相四线配电系统,不论其所带负载如何,均有ia+ib+ic+iN=0,漏电保护器不动作。一旦发生接地故障时,故障相有一部分电流经故障点流入大地,此时零序电流互感器内电流相量和不等于零,即ia+ib+ic+iN≠0,漏电保护器动作,切断故障回路,从而保证人身安全。图2-a、b中不同之处仅在于漏电保护器动作时,在切断相线的同时是否切断零线。因此,笔者以为,图2-a中所谓的三极漏电保护器是一种“假三极”漏电保护器,其实质与四极漏电保护器相同。
应用时,正常情况下,若负载是Y形接法,不论三相平衡与否,其中性点与N线相连,则穿过零序电流互感器的相线及N线电流相量和为零,即
ia+ib+ic=-iN,当然没有问题。但若负载是N形接法,由于负载无中性点,则漏电保护器的N线被悬空,iN=0。此时,只有负载三相平衡,即ia+ib+ic=0,才有ia+ib+ic+iN=0,保证漏电保护器不动作。但如前所述,“负载三相平衡”是一个理论概念,不具多少实际意义。因此图2-a、b类型的漏电保护器均应用于
三相四线配电系统中,而不论其负载是否平衡。对无中性点的负载,则不可使用。 而图3 则大不相同,图3-a中,穿过零序电流互感器的仅有3根相线,因此,它检测的仅是三相电流的相量和。在正常的配电系统中,要使ia+ib+ic=0,只有以下2种情况:
1. 三相四线配电系统中,负载三相平衡。此时,尽管系统的N线未穿过漏电保护器的零序电流互感器,但因ia+ib+ic=0,漏电保护器不动作。但亦如前述,这是一种理论状态。
2. 配电系统本身是三相三线制,不论其负载是否三相平衡,也不论负载是Y形接法或Δ形接法,均有ia+ib+ic=0,漏电保护器不动作。图3-a类型漏电保护器接三相三线负载时,
负载Y形接法及Δ形接法的配电电路图如图4-a、b所示。
因此,图3-a类型的三极漏电保护器更具实际意义的使用场合是前述的第2种情况,即应用于三相三线的配电系统,负载对N线无要求。电动机便是此类负载之一,不论该电动机的绕组是Y形接法还是Δ形接法。
图3-b中漏电保护器的工作原理及应用与图2-a、b相同,不再赘述。
对民用建筑电气设计而言,三极或四极漏电保护器的应用是广泛的。例如,按规范,在住宅楼单元进线处要设300mA的漏电保护器,此时因配电系统为三相四线(未考虑PE线),我们只能选用图3-a或图2-a、b类型的漏电保护器。若选用图3-a类型的漏电保护器则可能使其无法正常工作。另一个应用例子便是三相插座前端加装漏电保护。此时,若仅为预留三相插座而不知其负载为何,情况便比较复杂。具体地说,若负载有中性线,则不可选用图3-a类型的漏电保护器。若负载无中性线,则只能选用图3-a类型的漏电保护器(此种情况下,我们仍考虑实际三相负载不能满足“三相平衡”的理论要求)。
综上所述,三极、四极漏电保护器的正确使用应建立在弄清漏电保护器本身的结构,即N线是否穿过零序电流互感器与负载类型,即负载是否对中性线有要求的基础上。笔者以为,三极漏电保护器应定义为N线不穿过零序电流互感器,它应用于三相三线配电系统,负载无中性线。四极漏电保护器应定义为N线穿过零序电流互感器,它应用于三相四线配电系统,负载有中性线。对图2-a类型的所谓“三极漏电保护器”因其容易混淆概念而须引起大家注意。
固态继电器(SOLIDSTATE RELAYS),简写成“SSR”,是一种全部由固态电子元件组成的新型无触点开关器件,它利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无火花地接通和断开电路的目的,因此又被称为“无触点开关”,它问世于70年代,由于它的无触点工作特性,使其在许多领域的电控及计算机控制方面得到日益广范的应用。
一、固态继电器的原理及结构
SSR按使用场合可以分成交流型和直流型两大类,它们分别在交流或直流电源上做负载的开关,不能混用。
图1
下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控制信号提供一个输入/输出端之间的通道,但又在电气上断开SSR中输入端和输出端之间的(电)联系, 以防止输出端对输入端的影响,耦合电路用的元件是“光耦合器”,它动作灵敏、响应速度高、输入/输出端间的绝缘(耐压)等级高;由于输入端的负载是发光二极管,这使SSR的输入端很容易做到与输入信号电平相匹配,在使用可直接与计算机输出接口相接,即受“1”与“0”的逻辑电平控制。触发电路的功能是产生合乎要求的触发信号,驱动开关电路④工作,但由于开关电路在不加特殊控制电路时,将产生射频干扰并以高次谐波或尖峰等污染电网,为此特设“过零控制电路”。所谓“过零”是指,当加入控制信号,交流电压过零时,SSR即为通态;而当断开控制信号后,SSR要等待交流电的正半周与负半周的交界点(零电位)时,SSR才为断态。这种设计能防止高次谐波的干扰和对电网的污染。吸收电路是为防止从电源中传来的尖峰、浪涌(电压)对开关器件双向可控硅管的冲击和干扰(甚至误动作)而设计的,一般是用“R-C”串联吸收电路或非线性电阻(压敏电阻器)。图2是一种典型的交流型SSR的电原理图。
图2
图3
直流型的SSR与交流型的SSR相比,无过零控制电路,也不必设置吸收电路,开关器件一般用大功率开关三极管,其它工作原理相同。不过,直流型SSR在使用时应注意:①负载为感性负载时,如直流电磁阀或电磁铁,应在负载两端并联一只二极管,极性如图3所示,二极管的电流应等于工作电流,电压应大于工作电压的4倍。②SSR工作时应尽量把它靠近负载,其输出引线应满足负荷电流的需要。③使用电源属经交流降压整流所得的,其滤波电解电容应足够大。 图4 给出了几种国内、外常见的SSR的外形。
图4
二、固态继电器的特点
SSR成功地实现了弱信号(Vsr)对强电(输出端负载电压)的控制。由于光耦合器的应用,使控制信号所需的功率极低(约十余毫瓦就可正常工作),而且Vsr所需的工作电平与TTL、HTL、CMOS等常用集成电路兼容,可以实现直接联接。这使SSR在数控和自控设备等方面得到广泛应用。在相当程度上可取代传统的“线圈—簧片触点式”继电器(简称“MER”)。
SSR由于是全固态电子元件组成,与MER相比,它没有任何可动的机械部件,工作中也没有任何机械动作;SSR由电路的工作状态变换实现“通”和“断”的开关功能,没有电接触点,所以它有一系列MER不具备的优点,即工作高可靠、长寿命(有资料表明SSR的开关次数可达108-109次,比一般MER的106高几百倍);无动作噪声;耐振耐机械冲击;安装位置无限制;很容易用绝缘防水材料灌封做成全密封形式,而且具有良好的防潮防霉防腐性能;在防爆和防止臭氧污染方面的性能也极佳。这些特点使SSR可在军事(如飞行器、火炮、舰船、车载武器系统)、化工、井下采煤和各种工业民用电控设备的应用中大显身手,具有超越MER的技术优势。
交流型SSR由于采用过零触发技术,因而可以使SSR安全地用在计算机输出接口上,不必为在接口上采用MER而产生的一系列对计算机的干扰而烦恼。 此外,SSR还有能承受在数值上可达额定电流十倍左右的浪涌电流的特点。
表1
参数名称(单位) 参数值 最小 典型 最大 直流控制电压(V) 3.2 14 输入电流(mA) 20 接通电压(V) 3.2 输入端 关断电压(V) 1.5 反极向保护电压(V) 15 绝缘电阻(Ω) 109 介质耐压(V) 1500 额定输出电压(V) 25 250 额定输出电流(A) 10 浪涌电流(A) 100 过零电压(V) ±15 输出压降(V) 2.0 输出漏电流(mA) 10 输出端 接通电间(mS) 10 关断时间(mS) 10 工作频率(Hz) 47 70 功率损耗(W) 1.5 关断dV/dt(V/μs) 200 晶闸管结温℃ 110 工作温度(℃) -20 +80 三、主要参数与选用
功率固态继电器的特性参数包括输入和输出参数,下面以北京科通继电器总
厂生产的GX-10F继电器为例,列出输入、输出参数,详见表1,根据输入电压参数值大小,可确定工作电压大小。如采用TTL或CMOS等逻辑电平控制时,最好采用有足够带载能力的低电平驱动,并尽可能使“0”电平低于0.8 V。如在噪声很强的环境下工作,不能选用通、断电压值相差小的产品,必需选用通、断电压值相差大的产品,(如选接通电压为8 V或12 V的产品)这样不会因噪声干扰而造成控制失灵 。
输出参数的项目较多,现对主要几个参数说明如下: 1、额定输入电压
它是指定条件下能承受的稳态阻性负载的最大允许电压有效值。如果受控负载是非稳态或非阻性的,必需考虑所选产品是否能承受工作状态或条件变化时(冷热转换、静动转换、感应电势、瞬态峰值电压、变化周期等) 所产生的最大合成电压。例如负载为感性时,所选额定输出电压必须大于两倍电源电压值,而且所选产品的阻断(击穿)电压应高于负载电源电压峰值的两倍。如在电源电压为交流220V、一般的小功率非阻性负载的情况下,建议选用额定电压为400V—600V
的SSR产品;但对于频繁启动的单相或三相电机负载,建议选用额定电压为660V—800V的SSR产品。 2、额定输出电流和浪涌电流
额定输出电流是指在给定条件下(环境温度、额定电压、功率因素、有无散热器等)所能承受的电流最大的有效值。一般生产厂家都提供热降额曲线。如周围温度上升,应按曲线作降额使用。
浪涌电流是指在给定条件下(室温、额定电压、额定电流和持续的时间等)不会造成永久性损坏所允许的最大非重复性峰值电流。交流继电器的浪涌电流为额定电流的5-10倍(一个周期),直流产品为额定电流的1.5-5倍(一秒)。在选用时,如负载为稳态阻性,SSR可全额或降额10%使用。对于电加热器、接触器等,初始接通瞬间出现的浪涌电流可达3倍的稳态电流,因此,SSR降额20%-30%使用。对于白织灯类负载,SSR应按降额50%使用,并且还应加上适当的保护电路。对于变压器负载,所选产品的额定电流必须高于负载工作电流的两倍。对于负载为感应电机,所选SSR的额定电流值应为电机运转电流的2—4倍,SSR的浪涌电流值应为额定电流的10倍。
固态继电器对温度的敏感性很强,工作温度超过标称值后,必须降热或外加散热器,例如额定电流为10A的JGX—10F产品,不加散热器时的允许工作电流只有10A。 四、应用电路 1、基本单元电路
如图5a所示为稳定的阻性负载,为了防止输入电压超过额定值,需设置一限流电阻Rx;当负载为非稳定性负载或感性负载时,在输出回路中还应附加一个瞬态抑制电路,如图5b所示,目的是保护固态继电器。通常措施是在继电器输出端加装RC吸收回路(例如:R=150 Ω,C=0.5 μF或R=39 Ω,C=0.1 μF),它可以有效的抑制加至继电器的瞬态电压和电压指数上升率dv/dt。在设计电路时,建议用户根据负载的有关参数和环境条件,认真计算和试验RC回路的选值。另一个常用的措施是在继电器输出端接入具有特定钳位电压的电压控制器件,如双向稳压二极管或压敏电阻(MOV)。压敏电阻电流值应按下式计算:
Imov=(Vmax-Vmov)/ZS
其中ZS为负载阻抗、电源阻抗以及线路阻抗之和,Vmax、Vmov分别为最高瞬态电压、压敏电阻的标称电压,对于常规的220V和380V的交流电源,推荐的压敏电阻的标称电压值分别为440-470V和760-810V。
在交流感性负载上并联RC电路或电容,也可抑制加至SSR输出端的瞬态电压和电压指数上升率。
但实验表明,RC吸收回路,特别是并联在SSR输出端的RC吸收回路,如果和感性负载组合不当,容易导致振荡,在负载电源上电或继电器切换时,加大继电器输出端的瞬变电压峰值,增大SSR误导通的可能性,所以,对具体应用电路应先进行试验,选用合适的RC参数,甚至有时不用RC吸收电路更有利。 对于容性负载引起的浪涌电流可用感性元件抑制,如在电路中引入磁干扰滤波器、扼流圈等,以限制快速上升的峰值电流。
另外,如果输出端电流上升变化率(di/dt)很大,可以在输出端串联一个具有高磁导率的软化磁芯的电感器加以限制。
图5
通常SSR均设计为“常开”状态,即无控制信号输入时,输出端是开路的,但在自动化控制设备中经常需要“常闭”式的SSR,这时可在输入端外接一组简单的电路,如图5c所示,这时即为常闭式SSR。 2、多功能控制电路
图6a为多组输出电路,当输入为“0”时,三极管BG截止,SSR1、SSR2、SSR3的输入端无输入电压,各自的输出端断开;当输入为“1”时,三极管BG导通,SSR1、SSR2、SSR3的输入端有输入电压,各自的输出端接通,因而达到了由一个输入端口控制多个输出端“通”、“断”的目的。
图6b为单刀双掷控制电路,当输入为“0”时,三极管BG截止,SSR1输入端无输入电压,输出端断开,此时A点电压加到SSR2的输入端上(UA-UDW应使SSR2输出端可靠接通),SSR2的输出端接通;当输入为“1”时,三极管BG导通,SSR1输入端有输入电压,输出端接通,此时A点虽有电压,但UA-UDW的电压值已不能使SSR2的输出端接通而处于断开状态,因而达到了“单刀双掷控制电路”的功能(注意:选择稳压二极管DW的稳压值时,应保证在导通的SSR1“+”端的电压不会使SSR2导通,同时又要兼顾到SSR1截止时期“+”端的电压能使SSR2导通)。
图6
3、用计算机控制电机正反转的接口及驱动电路
图7计算机控制单相交流电机正反转的接口及驱动电路,在换向控制时,正反转之间的停滞时间应大于交流电源的1.5个周期(用一个“下降沿延时”电路来完成),以免换向太快而造成线间短路。电路中继电器要选用阻断电压高于600 V和额定电压为380 V以上的交流固态继电器。
图7 计算机控制单相交流电机正反转的接口及驱动电路
为了限制电机换向时电容器的放电电流,应在各回路中外加一只限流电阻Rx,其阻值和功率可按下式计算:
Rx=0.2³VP/IR(Ω), P=Im2Rx
其中:VP—电源峰值电压(V);IR—固态继电器额定电流(A);Im—电机运转电流(A);P—限流电阻功率(W)
图8 计算机控制三相交流电机正反转的接口及驱动电路
图8计算机控制三相交流电机正反转的接口及驱动电路,图中采用了4个与非门,用二个信号通道分别控制电动机的起动、停止和正转、反转。当改变电动机转动方向时,给出指令信号的顺序应是“停止—反转—起动”或“停止—正转—起动”。延时电路的最小延时不小于1.5个交流电源周期。其中RD1、RD2、RD3为熔断器。当电机允许时,可以在R1-R4位置接入限流电阻,以防止当万一两线间的任意二只继电器均误接通时,限制产生的半周线间短路电流不超过继电器所能承受的浪涌电流,从而避免烧毁继电器等事故,确保安全性;但副作用是正常工作时电阻上将产生压降和功耗。该电路建议采用额定电压为660 V或更高一点的SSR产品。 五、结束语
由前述可以看到SSR的性能与电磁式继电器相比有着很多的优越性,特别易于实现计算机的编程控制,因此使得控制的实现更加方便、灵活。但它也存在一些弱点,如:导通电阻(几Ω—几十Ω)、通态压降(小于2 V)、断态漏电流(5—10mA)等的存在,易发热损坏;截止时存在漏电阻,不能使电路完全分开;易受温度和辐射的影响,稳定性差;灵敏度高,易产生误动作;在需要联锁、互锁的控制电路中,保护电路的增设,使得成本上升、体积增大。因此,对于SSR具有的独特性能,必须正确的理解和谨慎使用,方能发挥其独特的性能,并确保SSR无故障的工作。
1 引言
我国城乡配电网中大量采用了三相四线制接线方式,且配电变压器为Y/Yno接线,存在很多的单相负载,因此配电变压器的三相不平衡运行是不可避免的。国标GB50052《供配电设计规范》、《变压器运行规程》中都规定了Y/Yno接线的配电变压器运行时中线电流不能超过变压器相、线电流的25%,这是由变压器的结构所决定的。中线电流的增加会引起变压器损耗的增加,同时造成中性点电
[1]
位的偏移。本文定量分析了这种影响,同时采用一种新的补偿方法减小了附加损耗与中性点电压的偏移。
2 中线电流带来的损耗及中性点电位的偏移 2.1 中线电流带来的变压器损耗 (1)附加铁损
Y/Yno接线的配电变压器采用三铁心柱结构,其一次侧无零序电流,二次侧有零序电流,因此二次侧的零序电流完全是励磁电流,产生的零序磁通不能在铁心中闭合,需通过油箱壁闭合,从而在铁箱等附件中发热产生铁损。
Y/Yno接线变压器的零序电阻比正序电阻大得多,变压器的零序电阻可实测得到,文[2]提到315kVA变压器的零序电阻是正序电阻的15倍,因此零序电流产生的附加铁损较大。
(2)不平衡运行时绕阻附加铜损
配电变压器三相不平衡运行时三相绕组的总损耗(单位为kW)可计算为
式中 Ia、Ib、Ic为三相负荷电流;R1为变压器二次侧绕组电阻。
2.2 中线电流造成的电压偏移
由于Y/Yno接线的变压器一次侧没有零序电流,二次侧有零序电流,因此二次侧的零序电流完全是励磁电流,产生的零序磁通重叠在主磁通上,感应出零序电动势,造成中性点电压偏移,负荷重的相电压降低,负荷轻的相电压上升[3]。 2.3 实例分析
型号为SJ、315kVA 、10kV/0.4kV变压器的零序电阻R0=0.122Ω,零序电抗X0=0.174Ω,绕组电阻R1=0.00849Ω。
0.17kW;④总损耗功率△P=P0+△Pf=3.82kW;⑤一年内损耗电量W=3.82³8760KWh=33463KWh ;
由上述分析可知,Y/Yno接线方式的配电变压器不平衡运行带来的损耗与电压偏移是很大的,如对变压器的三相不平衡进行补偿,则既可以节能,又可以提高电能质量。
3 补偿方法
3.1 三相不平衡–无功补偿装置的工作原理
在三相系统中,跨接在相线与相线之间的电容或电感元件具有转移相间有功功率的作用,由于相间电感或电容元件的电流相量与每相电压相量成60°或120°夹角,可通过一个简单的示例来说明这一原理(本文称之为三相不平衡–无功补偿方法)。
有一单相负荷接于A相与零线之间,其电流IA=100A,功率因数cosφa=0.85,其中有功电流为85A,无功电流为53A。在A、B相间接入产生61A电流的电容器时,相量图如图1所示,图中,为A相电压相量,为接于A、B相间的电容器电流相量,超前A相电压120º;A相负荷情况为:无功电流为零,有功电流为54A,有功电流相量与无功电流相量合成的总电流为54A,A相有功负荷减少了;B相负荷的情况为:B相有功电流为31A,无功电流为53A,有功电流相量和无功电流相量合成的总电流为61A。
由图1可见,通过在A、B相间跨接一电容器,A相的有功转移到B相一部分,而接电容器前后A相与B相的有功之和并未改变,这说明可以在变压器三相之间调整有功,变压器的三相不平衡也是可以调整、补偿的。
对于三相不平衡系统,可采用对称分量法将电流分解为正序电流、负序电流和零序电流,而三相平衡系统的电流只有正序电流,因此只需补偿掉负序电流和零序电流,不平衡的三相电流就可转变成平衡的三相电流 [3-8]。 采用星角混合接法的电容、电抗元件可补偿掉或大大减少零序电流与负序电流,使系统转变成基本平衡系统。 3.2 实例分析
2.3小节的配电变压器A相电流Ia=100A、B相电流Ib=200A、C相电流Ic=300A、功率因数cosφa =cosφb=cosφc=0.7时,零序电流I0=173A。
根据三相不平衡–无功补偿方法得到如下数据:
Iao=0;②A相补偿后电流
,功率因数为0.982(见图3(a));③B相补偿后电流
功率因数为0.9998(见图3(b));④C
相补偿后电流
补偿后零序电流I0=45A。
,功率因数为0.9999(见图3(c));⑤
(2)采用共补–分补的无功补偿装置将无功全部补偿[9],补偿相量图如图4所示,补偿后A相电流
补偿后零序电流I0=120A。
比较图3和图4可见,三相不平衡–无功补偿方法与分补–共补方法相比,零序电流下降很多,使不平衡系统基本恢复到平衡。表1为三相不平衡–无功补偿装置在徐州供电局的投切记录,在功率因数较高的情况下,零序电流也下降很多;如果采用共补与分补装置,零序电流不但没有减少,而且会增加。该装置在朝阳市供电局某一变压器上投运与不投运时得到的数据分别列于表2和表3中。 由表2和表3可见,装置运行与不运行时相比,零序电流下降很多,三相电压不平衡度也下降较多。
4 结论
本文对配电变压器三相不平衡运行带来的附加损耗、电压偏差进行了定量分析,通过一算例可知不平衡运行对附加损耗、电压偏差的影响是很大的。提出了利用电容、电抗元件对不平衡进行补偿的新方法,并与常规的无功补偿方法做了比较,实测数据表明本文的方法可明显降低零线电流和减少电压偏差。
参考文献
[1] 黄绍平.负荷不平衡对配电变压器的危害和相应的配电设计方法[J].变压器,1996,33(5):30-32.
[2] 黄其励,高元楷,王世桢,等.电力工程师手册电气卷[M].北京:中国电力出版社,2000.
[3] 林海雪.电力系统三相不平衡[M].北京:中国电力出版社,1998. [4] 赖声礼,李心广,秦华标(Lai Shengli,Li Xinguang,Qin Huabiao).电网无功及三相不平衡综合补偿研究(An approach of integrated compensation for reactive power and three phase unbalance)[J].电网技术(Power System Technology),2001,25(10):30-33.
[5] 彭辉,黄亦农,王茂海(Peng Hui,Huang Yinong,Wang Maohai).配电网中三相不平衡负荷补偿(3-phase asymmetric load compensation in
distribution system)[J].电力自动化设备(Electric Power Automation Equipment),2002,22(1):32-34. [6] 陈亚民(Chen Yamin).一种不对称电力系统潮流算法(A load flow algorithm for unsymmetrical power system)[J].电网技术(Power System Technology),1997,21(6):8-13.
[7] 朱永强,刘文华,邱东刚,等(Zhu Yongqiang,Liu Wenhua,Qiu Donggang et al).基于单相STATCOM 的不平衡负荷平衡化补偿的仿真研究(Simulation of balancing compensation of unbalanced load based on single phase STATCOM)[J].电网技术(Power System Technology),2003,27(8):42-45,71. [8] 姜彤,白雪峰,郭志忠,等(Jiang Tong,Bai Xuefeng,Guo Zhizhong et al).基于对称分量模型的电力系统短路故障计算方法(A new method of power system fault calculation based on symmetrical components)[J].中国电机工程学报(Proceedings of the CSEE),2003,23(2):50-55.
[9] 景翔,陈歆技,吴杰(Jing Xiang,Chen Xinji,Wu Jie).三相不平衡系统的无功补偿控制(Reactive power compensation of unbalanced three-phase system) [J].电力自动化设备(Electric Power Automation Equipment),2003,23(1):1-3.
1 前言
电动机无功就地补偿是一项重要的节能措施,低压异步电动机的就地补偿技术以三机一泵(风机、空气压缩机、球磨机和水泵)为重点,在我国已较为广泛地推广应用,并取得良好节能效果和经济效益,是实施国家标准GB/T12497-1990《三相异步电动机经济运行》,推动节能工作的一项重要措施。高压电动机的额定容量较大,年运行小时数较多,如实施无功就地补偿,则节能效果更为显著,但就国内目前情况来看,还处于刚起步阶段,方兴未艾。为此,对高压异步电动机的无功功率就地补偿问题进行一次调研分析和研究,实属十分必要。这项新技术的进一步推广应用,必将获得显著的经济效益。 2 应用状况量化分析
国家标准GB/T12497-1990《三相异步电动机经济运行》第5.1条对电动
机,额定电压的选择规定:单台容量在200kW以下时,选用低压异步电动机;容量在200~355kW之间,如条件许可,宜选用高压异步电动机;容量在355kW以上时必需选用高压异步电动机。高压异步电动机价格高,控制设备昂贵,但效率和功率因数较高,低压异步电动机及控制设备的价格便宜,但损耗较大,电能利用率低。国产Y系列6kV三相异步电动机的容量为220~2000kW,因此高压就地补偿装置亦在上述范围内相应加以考虑。 为了从实际出发进行量化分析,我们调查了现场中实际使用的229组高压无功就地补偿装置,其结果量化分析如下:
(1)229组高压就地补偿装置中6kV电压等级的80组占35%,10kW电压等级的149组占65%。
(2)按使用高压就地补偿装置的行业分:用于自来水公司及引水工程泵站154组占67%,水泥企业25组占11%,钢铁企业11组占5%,造纸企业5组占2%,化工企业4组占1.7%,采矿企业3组占1.3%,其它27组占12%。 (3)按高压就地补偿装置的单组容量分:75~700kvar的226组,其中以100、150、200、250、300kvar五个容量等级使用最为广泛,共占总共229组的72.6%。非标的大容量组3组,其中:1200kvar的一组,1400kvar的2组。各不同单组容量的组数及所占比例,见表1。 3 电气接线和结构特点
用于无功就地补偿的高压并联电容器装置的结构十分简单,其电气接线如图1所示,为了节约柜体的空间,尽量选用带内部放电电阻的三相并联电容器,由于补偿装置与电动机绕组直接相连接,以电动机绕组作为切断后的放电装置,不需另行附装放电线圈。用户可根据装设地点的条件,选择所需的配套设备。在被调查的229组补偿装置中,有84组带1%~13%的串联电抗器L,占总组数的36.7%。小容量的干式电抗器可装于补偿箱内,油浸式串联电抗器则装于箱外。附装氧化锌避雷器的补偿装置有71组,占总组数的31%。附装电流互感器和电流表的补偿装置有87组,占总组数的38%。就地补偿装置也可以根据实际需要,同时选择两种或三种的上述配套设备。
某公司带串联电抗器的就地补偿箱内部结构断面图如图2所示,其外形尺寸见表2。
就是补偿装置和电动机之间不再装设开关设备,为了显示其运行状态,均装有高压带电显示装置,其显示器和电流表装于相面。 4 补偿容量的选择
国家标准GB50052-1995《供配电系统设计规范》第5.0.10条规定:“接在电动机控制设备侧电容器的额定电流,不应超过电动机励磁电流的0.9倍,其馈
电线截面和过电流保护装置的整定值,应按电动机一电容器组的电流确定。”上述规定与IEC标准831的规定相一致,其原因是为了防止当电动机切断电源后,尚未停止转动的过程中,由于电容器产生的自激磁造成的过电压,使电机受到损坏。
选择就地补偿装置容量QC的计算公式有二。 (1)按电动机的空载电流选择
式中:QC—补偿容量,kvar; U—电动机额定电压,kV; I0—电动机空载电流,A
(2)按电动机补偿前后的功率因数选择
式中:P—电动机的额定功率,kW; cosΦ1—补偿前的功率因数; cosΦ2—补偿后的功率因数
两种计算方法取得的QC值结果往往并不一致,如按第二种方法算出的QC值小于第一种方法的计算结果,则以第二种方法计算结果为准,如第二种方法算出的QC值大于第一种方法的计算结果时,以第一种计算方法算出的结果为准,补偿率KB=QC/P。
对Y系列6kV三相异步电动机的补偿容量和补偿率的推荐值亦可从表3中查得。 表3中的QC值是按公式(2)取cosΦ2=0.95时计算出来的,为了充分利用制造厂现成规格的产品,QC增减±2kvar对补偿结果影响不大。另外,表3中查得的数值仍应与公式(1)计算所得的QC值相比较,如大于公式(1)计算结果时,仍以公式(1)的计算值为准。对YR系列异步电动机亦可用表3进行QC值的选择,作为参考。 KB值与电动机容量的关系:
电动机容量越大,其功率因数越高,则tanΦ1值越小,KB值也越小。例如6kV 4级的220kW电动机QC=90kvar,KB=0.41而2000kW电动机QC=500kvar,KB=0.25。
KB值与电动机转速的关系:
极数越高则补偿率越高,以6kV500kW电动机为例,4极时QC=170kvar,KB=0.34;6极时QC=200kvar,KB=0.4;8极时QC=250kvar,KB=0.50;10极时QC=270kvar,KB=0.54;12极时QC=290kavr,KB=0.58。
5 高压无功就地补偿的经济效益
高压电动机无功就地补偿的经济效益主要有以下四个方面:(1)由于提高功率因数减少的电费支出;(2)由于无功电流分量的减少,降低了电能传输的损耗;(3)有利于充分利用供电设备的容量,减少用电贴费的支出;(4)减少了电能传输产生的电压损失。其中以第1、2项为主。有关补偿设备的投资回收期,与年利用小时有关,对经常处于运行状态的水泵类设备来讲,就地补偿设备的投资回收期一般为0.5~1年左右,举两个实例加以说明:
(1)上海某水厂三泵站,装有6kV、630kW、8极异步电动机4台,每台装设250kvar的就地补偿电容器装置,装设后功率因数由0.8上升到0.946,电流值由48A下降为40.7A,每小时可节电58.8kW²h,每年节电5.08³105 kW²h,节约电费约14万元。
(2)温州某水厂泵站,装有6kV、1000kW、10极异步电动机4台,每台装设400kvar的就地补偿电容装置,装设后功率因数由0.823上升到0.957,电流值由50.9A下降为32.1A,补偿后每小时可节电73.6kW²h,每年节电6.35³105 kW²h,节约电费约18万元。 6 防止自激磁和谐振的措施 (1)防止自激磁的措施
采用电容器就地补偿的电动机,切断电源后,电动机仍会在惯性作用下继续转动一段时间,此时电容器的放电电流成为激磁电流,可使电动机的磁场因自激
磁而产生电压,电动机即运行于发电状态,可能导致对电机及电容器绝缘的损坏,防止的措施是:补偿设备的容性电流值应不大于电动机空载电流值的90%。 (2)防止产生谐振的措施
防止产生谐振的条件是:如(3)式中所示的n值为整数时,电容器将在n次谐波下产生谐振,必须加以避免。
式中:Sk—电容器安装处的短路容量,MVA; QC—补偿电容器的容量,Mvar。
参考文献:
[1] 国家标准GB/T12497-1990三相异步电动机经济运行[S]. [2] 国家标准GB50052-1995供配电系统设计规范[S]. 1 概述
降压起动是利用起动设备将电源电压适当降低后加到电机(笼型)的定子绕组上进行起动,待电机起动运转后,再使其电压恢复到额定值正常运行。但是,由于电机转矩与电压的平方成正比,降压起动使电机的起动转矩大为降低,电机需要在空载或轻载下起动。同时,电机在端电压降至正常值的65%甚至更低的电压下时,相应起动时间过长,并且电机在通过开关短接或切除起动设备加入全压时,电压的突变会产生电流的跃变,即大电流二次冲击!这是降压起动的缺点,也是我们进行技改的原因之一。
软起动的实质也是降压起动(变频例外),把原不可变的阻抗改为可控。简单来说通过平滑改变串接阻抗(电阻)值,使电机端电压平滑改变实现电机平滑起动,进一步减小起动电流对设备的冲击,基本消除电流的跃变,使电机起动特性软化,保护电机、机械设备。
目前我院221气源站工况是在轻载下降压起动,起动后全压运行,运行中无需进行调速。
2 目前起动方式存在的问题
常见的降压起动方式有Y-△、电阻、电抗器、自耦变压器等,运用在不同年代的技术水平,具有各自的优缺点,都能达到降低起动电流的目的。目前221气源站2500kW电机采用定子绕组串接电抗器降压起动,起动电流4Ie(起动电流1150A),起动时间t=18s,起动电流还是较大,对电动机本身、电网、机械设备的可靠运行都有一定的影响,主要表现在以下几个方面。
2.1 221气源站2500kW电机均已使用近30年,电机整体绝缘水平下降,过高的起动电流使电机温升较大,加速电机的老化,增加出现电机本体故障的可能性。近几年来,我单位陆续出现多起电机定子绕组端部短路事故,均在起动时发生。
2.2 串接电抗器降压起动,起动时系统功率因素低,母线的压降还是较大,容易对电网内其它设备的运行产生影响,可能使其它设备失步跳闸。我院属专线供电,此现象暂时影响还不大。
2.3 可能易烧轴瓦。表面上看,电机起动与压缩机烧轴瓦风马牛不相及,但事实上两者之间有联系。221气源站压缩机轴承采用动压轴承,该轴承的润滑由自身旋转而产生的油膜实现,一般需要一定的时间才能形成完好的润滑油膜。电机起动时,起动电流大,相应起动时间也快,如果在轴承还未来的及形成润滑油膜时已高速旋转起来,这种情况非常容易使轴承拉瓦。
为了较好的解决上述问题,我们引入软起动装置,采用软起动对221气源站6台2500kW电机技术改造。当前我们了解的高压软起动方式主要有变频软起动、串接可变电阻(热变电阻、液体电阻)及串接可调电抗器(磁控)等。 3 变频、电阻类、电抗器类软起动简介及比较 3.1 高压变频软起动
高压变频起动、调速原理其实早就发展成熟了,但由于受制造瓶颈的限制,近二十年才逐渐得到了应用,可实现软起动、调速。高压变频代表着大型电动机软起动技术的发展方向,近年来取得了很大成就,相对磁控软起动、热变电阻等起动方案而言,具有明显的技术进步性,这一点不可置疑。 3.2 高压电阻类软起动
最早的降压起动采用固体电阻,由于固体电阻不可避免的缺陷(热容特性低等),高压动力设备的降压起动采用较少。随着技术水平的发展,具有频敏特性的固态电阻在低压、高压动力设备上得到了应用,80年代初期出现了液态电阻、热变电阻应用于高压动力设备,液态形式的电阻具有较高的热容特性。 液态软起动装置通过电流闭环自动控制单元控制传动机构,电机拖曳极板改变极间电阻值实现软起动;热变电阻起动装置利用具有负温度特性的电解液体,在温度变化下改变电阻值实现软起动。液态软起动装置有良好的控制功能,与磁控软起动控制功能接近,缺点是控制、传动机构复杂,故障点多,液阻需定期检验,一次、二次电源交错,绝缘性能要求较高。热变电阻与液态电阻相比,结构简单,起动特性较好(厂家提供特性曲线比较),维护量小,长期安全可靠,适用电机容量大。鉴于此,下面该类仅以热变电阻起动装置为例。 3.3 高压电抗器类软起动
在较早的高压降压起动中,我国采用电抗器降压起动居多,传统的电抗器存在阻抗不可调,起动特性不好,功率因素低等缺点,目前国内已很少使用。磁控正是在以上的基础上进行改良,通过在电抗器中加入控制绕组,利用电、磁控制技术,外部自动控制单元调整控制绕组中电流的大小,控制磁导率来调节电压的手段,改变励磁实现电动机软起动。起动过程中,电抗器两端的电压(电流)根
据起动电流自动调整,由大变小无级变化,使电动机端电压平滑上升值额定值。磁控理论上可以调速,但是实际应用反映在起动过程上,当达到最优化起动后,起动电流是不进行调整的。 3.4 三类软起动特点比较 3.4.1技术性比较
单从技术上来说,高压变频具有不可比拟的优势,起动特性好,可连续起动多次,起动电流可控制在额定电流以下,起动时电网功率因素高(0.9~0.95),电网压降小,同时还可进行调速,减小动力设备功率消耗,节约电能。缺点是产生高磁谐波,污染电网,影响系统内其它设备的用电质量,要解决谐波污染,还得追加设备投资。
采用电抗器类(磁控)软起动,特点是控制较灵活,起动电流的设置较方便。缺点是本来电机起动时的功率因素就低,因串接电抗器而变得更低,因此对电力系统没有太多的好处,母线压降大,同时有一定的谐波污染。
高压热变电阻器软起动对电机、机械设备冲击小。与电抗器比较,性能相对要好,起动时功率因素较高(0.7)以上,起动电网压降小,无谐波污染,通过更换电解液即可延长使用寿命。缺点是阻值会微弱的受到温度的影响。 具体比较见表1。
表1:变频软起动、高压热变电阻器软起动、磁控软起动性能对比表
序号 性能指标 1 2 3 4 5 6 7 8 9 10 起动电流 起动时功率因素 母线压降 起动时间 控制方式 谐波 应用领域 海拔高度 环境温度 允许起动次数 变频软起动 ≤Ie 0.9 *可以忽略 60~120s 高压热变电阻器 2.5~3Ie ≈0.8 ≤7% 小于30s 磁控软起动 1.5~3.5Ie *0.15~0.3(参考电抗器) 厂家未提供数据 5~120s 闭环控制系统 开环/闭环自动 自然起动 控制 有高次谐波 空载或轻载 ≤1000m 0~40℃ 可连续 空载或轻载 ≤1000m 0~40℃ 不产生任何高次谐波 有激磁谐波 空载或轻载 ≤1000m 0~40℃ 3次或累计启动时间 3~5次 不大于120s 50~70元/KW 免维护 11 单位投资 12 使用维护 500~800元/KW 50~70元/KW 维护工作量大 免维护 备注:1、此表数据参考襄樊大力、美国罗宾康公司、武汉科锐尔及部分其它资料。
2、有“*”标记表示还需确定。 3.4.2经济性比较
从实用性经济角度来说,高压变频起动属于一种过于奢侈的技术方案,虽然变频起动可以将起动电流降到额定电流以下,但是对于不是特别频繁起动又不需要调速的大型动力设备来说,仅仅为了起动而进行巨额投资,太不经济。 高压热变电阻器软起动、磁控软起动价格是高压变频起动的1/8~1/10,对于我院来说,采用两者之一可节省投资数百万元。 3.4.3可靠性比较
当设备工况要求较低,几种设备均满足工况要求时,除去价格因素,可靠性就显得相对重要,选择质量差、可靠度低的设备,必定会对我院今后的科研生产产生消极影响。
我们知道,不考虑产品质量等其他因素的影响,单从技术角度看,结构简单、使用简便、操作方便的设备,故障状态下更易维护,高压热变电阻器软起动装置与变频、磁控软起动相比,结构简单,旁路系统少,从可靠性讲,应具有一定的优势,但它毕竟是一个新生产品(如同磁控),可不可靠,还应从用户角度进行了解。
高压变频软起动技术含量高,设备复杂,技术难度较大,使用维护及故障处理等对技术人员的技术素质要求高。发生故障,解决问题的技术难度较高,事故处理周期较长。
磁控软起动最大的优势是外接电路发生故障,还可作为普通电抗器适用,这是作为故障情况下的考虑。 4结束语
选择起动方式,在现有的技术水平下,原则是既保护电机,延长电机使用寿命,又要保护电网和机械设备,同时降低设备维护和管理工作量,保证选择设备的可靠性。
对于一个产品的选择,应是一个系统工程,要结合各种因素进行,既要考虑设备的先进性,也要兼顾价格因素;既要考虑价格,也要兼顾产品质量。 同样,大电机的起动方式与设备管理息息相关,电机起动方式选择不当,对电力系统、电机本体、甚至对机械设备都会产生消极影响,增大以后设备的管理难度、维护难度。
本文力求严谨,但作者受技术水平局限,同时受视野面的限制,此文可能一些论点偏颇甚至错误,敬祈指正。 1 概述
降压起动是利用起动设备将电源电压适当降低后加到电机(笼型)的定子绕组上进行起动,待电机起动运转后,再使其电压恢复到额定值正常运行。但是,由于电机转矩与电压的平方成正比,降压起动使电机的起动转矩大为降低,电机需要在空载或轻载下起动。同时,电机在端电压降至正常值的65%甚至更低的电压下时,相应起动时间过长,并且电机在通过开关短接或切除起动设备加入全压时,电压的突变会产生电流的跃变,即大电流二次冲击!这是降压起动的缺点,也是我们进行技改的原因之一。
软起动的实质也是降压起动(变频例外),把原不可变的阻抗改为可控。简单来说通过平滑改变串接阻抗(电阻)值,使电机端电压平滑改变实现电机平滑起动,进一步减小起动电流对设备的冲击,基本消除电流的跃变,使电机起动特性软化,保护电机、机械设备。
目前我院221气源站工况是在轻载下降压起动,起动后全压运行,运行中无需进行调速。
2 目前起动方式存在的问题
常见的降压起动方式有Y-△、电阻、电抗器、自耦变压器等,运用在不同年代的技术水平,具有各自的优缺点,都能达到降低起动电流的目的。目前221气源站2500kW电机采用定子绕组串接电抗器降压起动,起动电流4Ie(起动电流1150A),起动时间t=18s,起动电流还是较大,对电动机本身、电网、机械设备的可靠运行都有一定的影响,主要表现在以下几个方面。
2.1 221气源站2500kW电机均已使用近30年,电机整体绝缘水平下降,过高的起动电流使电机温升较大,加速电机的老化,增加出现电机本体故障的可能性。近几年来,我单位陆续出现多起电机定子绕组端部短路事故,均在起动时发生。
2.2 串接电抗器降压起动,起动时系统功率因素低,母线的压降还是较大,容易对电网内其它设备的运行产生影响,可能使其它设备失步跳闸。我院属专线供电,此现象暂时影响还不大。
2.3 可能易烧轴瓦。表面上看,电机起动与压缩机烧轴瓦风马牛不相及,但事实上两者之间有联系。221气源站压缩机轴承采用动压轴承,该轴承的润滑由自身旋转而产生的油膜实现,一般需要一定的时间才能形成完好的润滑油膜。电机起动时,起动电流大,相应起动时间也快,如果在轴承还未来的及形成润滑油膜时已高速旋转起来,这种情况非常容易使轴承拉瓦。
为了较好的解决上述问题,我们引入软起动装置,采用软起动对221气源站6台2500kW电机技术改造。当前我们了解的高压软起动方式主要有变频软起动、串接可变电阻(热变电阻、液体电阻)及串接可调电抗器(磁控)等。 3 变频、电阻类、电抗器类软起动简介及比较 3.1 高压变频软起动
高压变频起动、调速原理其实早就发展成熟了,但由于受制造瓶颈的限制,近二十年才逐渐得到了应用,可实现软起动、调速。高压变频代表着大型电动机软起动技术的发展方向,近年来取得了很大成就,相对磁控软起动、热变电阻等起动方案而言,具有明显的技术进步性,这一点不可置疑。 3.2 高压电阻类软起动
最早的降压起动采用固体电阻,由于固体电阻不可避免的缺陷(热容特性低等),高压动力设备的降压起动采用较少。随着技术水平的发展,具有频敏特性的固态电阻在低压、高压动力设备上得到了应用,80年代初期出现了液态电阻、热变电阻应用于高压动力设备,液态形式的电阻具有较高的热容特性。 液态软起动装置通过电流闭环自动控制单元控制传动机构,电机拖曳极板改变极间电阻值实现软起动;热变电阻起动装置利用具有负温度特性的电解液体,在温度变化下改变电阻值实现软起动。液态软起动装置有良好的控制功能,与磁控软起动控制功能接近,缺点是控制、传动机构复杂,故障点多,液阻需定期检验,一次、二次电源交错,绝缘性能要求较高。热变电阻与液态电阻相比,结构简单,起动特性较好(厂家提供特性曲线比较),维护量小,长期安全可靠,适用电机容量大。鉴于此,下面该类仅以热变电阻起动装置为例。 3.3 高压电抗器类软起动
在较早的高压降压起动中,我国采用电抗器降压起动居多,传统的电抗器存在阻抗不可调,起动特性不好,功率因素低等缺点,目前国内已很少使用。磁控正是在以上的基础上进行改良,通过在电抗器中加入控制绕组,利用电、磁控制技术,外部自动控制单元调整控制绕组中电流的大小,控制磁导率来调节电压的手段,改变励磁实现电动机软起动。起动过程中,电抗器两端的电压(电流)根据起动电流自动调整,由大变小无级变化,使电动机端电压平滑上升值额定值。磁控理论上可以调速,但是实际应用反映在起动过程上,当达到最优化起动后,起动电流是不进行调整的。 3.4 三类软起动特点比较 3.4.1技术性比较
单从技术上来说,高压变频具有不可比拟的优势,起动特性好,可连续起动多次,起动电流可控制在额定电流以下,起动时电网功率因素高(0.9~0.95),
电网压降小,同时还可进行调速,减小动力设备功率消耗,节约电能。缺点是产生高磁谐波,污染电网,影响系统内其它设备的用电质量,要解决谐波污染,还得追加设备投资。
采用电抗器类(磁控)软起动,特点是控制较灵活,起动电流的设置较方便。缺点是本来电机起动时的功率因素就低,因串接电抗器而变得更低,因此对电力系统没有太多的好处,母线压降大,同时有一定的谐波污染。
高压热变电阻器软起动对电机、机械设备冲击小。与电抗器比较,性能相对要好,起动时功率因素较高(0.7)以上,起动电网压降小,无谐波污染,通过更换电解液即可延长使用寿命。缺点是阻值会微弱的受到温度的影响。 具体比较见表1。
表1:变频软起动、高压热变电阻器软起动、磁控软起动性能对比表
序号 性能指标 1 2 3 4 5 6 7 8 9 10 起动电流 起动时功率因素 母线压降 起动时间 控制方式 谐波 应用领域 海拔高度 环境温度 允许起动次数 变频软起动 ≤Ie 0.9 *可以忽略 60~120s 高压热变电阻器 2.5~3Ie ≈0.8 ≤7% 小于30s 磁控软起动 1.5~3.5Ie *0.15~0.3(参考电抗器) 厂家未提供数据 5~120s 闭环控制系统 开环/闭环自动 自然起动 控制 有高次谐波 空载或轻载 ≤1000m 0~40℃ 可连续 空载或轻载 ≤1000m 0~40℃ 不产生任何高次谐波 有激磁谐波 空载或轻载 ≤1000m 0~40℃ 3次或累计启动时间 3~5次 不大于120s 50~70元/KW 免维护 11 单位投资 12 使用维护 500~800元/KW 50~70元/KW 维护工作量大 免维护 备注:1、此表数据参考襄樊大力、美国罗宾康公司、武汉科锐尔及部分其它资料。
2、有“*”标记表示还需确定。 3.4.2经济性比较
从实用性经济角度来说,高压变频起动属于一种过于奢侈的技术方案,虽然变频起动可以将起动电流降到额定电流以下,但是对于不是特别频繁起动又不需要调速的大型动力设备来说,仅仅为了起动而进行巨额投资,太不经济。 高压热变电阻器软起动、磁控软起动价格是高压变频起动的1/8~1/10,对于我院来说,采用两者之一可节省投资数百万元。 3.4.3可靠性比较
当设备工况要求较低,几种设备均满足工况要求时,除去价格因素,可靠性就显得相对重要,选择质量差、可靠度低的设备,必定会对我院今后的科研生产产生消极影响。
我们知道,不考虑产品质量等其他因素的影响,单从技术角度看,结构简单、使用简便、操作方便的设备,故障状态下更易维护,高压热变电阻器软起动装置与变频、磁控软起动相比,结构简单,旁路系统少,从可靠性讲,应具有一定的优势,但它毕竟是一个新生产品(如同磁控),可不可靠,还应从用户角度进行了解。
高压变频软起动技术含量高,设备复杂,技术难度较大,使用维护及故障处理等对技术人员的技术素质要求高。发生故障,解决问题的技术难度较高,事故处理周期较长。
磁控软起动最大的优势是外接电路发生故障,还可作为普通电抗器适用,这是作为故障情况下的考虑。 4结束语
选择起动方式,在现有的技术水平下,原则是既保护电机,延长电机使用寿命,又要保护电网和机械设备,同时降低设备维护和管理工作量,保证选择设备的可靠性。
对于一个产品的选择,应是一个系统工程,要结合各种因素进行,既要考虑设备的先进性,也要兼顾价格因素;既要考虑价格,也要兼顾产品质量。 同样,大电机的起动方式与设备管理息息相关,电机起动方式选择不当,对电力系统、电机本体、甚至对机械设备都会产生消极影响,增大以后设备的管理难度、维护难度。
本文力求严谨,但作者受技术水平局限,同时受视野面的限制,此文可能一些论点偏颇甚至错误,敬祈指正。
因篇幅问题不能全部显示,请点此查看更多更全内容