微分方程定义
概念: 微分方程、常微分方程、常微分方程、偏微分方程、阶、解、通解、特解、奇解、定解条件、初值条件
微分方程:凡含有未知函数的导数或微分的方程
常微分方程:未知函数为一元函数的微分方程.
偏微分方程:未知函数为多元函数,同时含有多元函数的偏导数的微分方程
阶:微分方程中,未知函数的最高阶导数(或微分)的阶数
解:如果某个函数代入微分方程后使其两端恒等,则称此函数为该方程的解
通解(general solution):如果微分方程的解所包含独立的任意常数的个数等于方程的阶数,则称此解为方程的通解.(通解并不一定包含方程所有的解)
特解(particular solution):微分方程任一确定的解
奇解:不包含在通解中的解
定解条件:用来确定微分方程特解的条件。(微分方程一般具有无数个解,为了确定微分方程的一个特解,必须给出这个解所满足的条件。)
初值条件:如果定解条件是由系统在初始时刻所处的状态给出,则也称这种定解条件
为初值条件。
In general,a differential equation is an equation that contains an unknown function and one or more of its derivatives.
The order of a differential equation is the order of the highest derivative that occurs in the equation.
A function f is called a solution of a differential equation if the equation is satisfied when y=f(x) and its derivatives are substituded into the equation.
An nth-order equation has an nth-parameter family of solution.
A separable equation is a first-order differential equation in which the expression for dy/dx can be factored as a function of x times a funtion of y. In other words,it can be written in the form dy/dx=g(x)f(y)
Homogeneous Equations:The first-order differential equation is homogeous if it can be put in the form y′=f(y/x)(x≠0)
A first-order linear differential equation is one that can be put into the form dy/dx+P(x)y=Q(x)
To solve the linear differential equation y′+P(x)y=Q(x),multiply both sides by the intergrating factor I(x)=e
p(x)dx and integrate both sides.
因篇幅问题不能全部显示,请点此查看更多更全内容