您的当前位置:首页正文

初中数学分式知识点总结2

2024-07-18 来源:爱go旅游网

  一、分式

  ※1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

  整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

  ※2、整式和分式统称为有理式,即有:

  ※3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

  分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  ※4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

  二、分式的乘除法

  ※1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  ※2、分式乘方,把分子、分母分别乘方。

  逆向运用,当n为整数时,仍然有成立。

  ※3、分子与分母没有公因式的分式,叫做最简分式。

  三、分式的加减法

  ※1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

  ※2、分式的加减法:

  分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

  (1)同分母的分式相加减,分母不变,把分子相加减;

  上述法则用式子表示是:

  (2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

  上述法则用式子表示是:

  ※3、概念内涵:

  通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

  四、分式方程

  ※1、解分式方程的一般步骤:

  ①在方程的两边都乘最简公分母,约去分母,化成整式方程;

  ②解这个整式方程;

  ③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。

  ※2、列分式方程解应用题的一般步骤:

  ①审清题意;

  ②设未知数;

  ③根据题意找相等关系,列出(分式)方程;

  ④解方程,并验根;

  ⑤写出答案。

显示全文