发布网友 发布时间:2022-04-22 20:32
共3个回答
热心网友 时间:2022-04-11 18:23
如何选择数据分析工具,总结了以下3点供大家参考。
(1)多数据源支持:数据分析工具须支持连接多个数据源以进行集成分析。由于网络技术的飞速发展,产生的非结构化数据(如文本、图像、声音和网页)越来越多。
除了支持关系数据库(如Oracle、SQLServer、Access、MySQL等),还需要考虑MongoDB、Redis、HBase等非关系数据库是否被支持,不同的产品对上述数据管理提供了不同程度的支持。
(2)分析指标的多样性:为了更好地表示内容,数据分析本身需要足够详细,并挖掘出数据背后真正有价值的信息。数据分析的维度和指标因行业和用户群体而异。
所以,在选择数据分析工具时,最好选择一种详尽、全面的工具来分析指标,使结果更具深度,这样才能满足用户的要求,才能借助数据分析工具挖掘出所有数据背后的真正意义。
(3)操作便捷:一款好用的数据分析工具不仅需要具备强大的分析功能,还需要具备便捷的操作性。像Python和R语言也可以用作数据分析,但是它们用起来并不方便,没有掌握相关的IT知识很难上手。
BI工具就是一类易上手操作简单的数据分析工具,只需要简单的鼠标拖拽维度和指标,即可快速生成图表,全程无需编写表达式,零学习成本,一分钟上手。让你们工作上得心应手。
Smartbi精心为中国企业量身定制的本土化、敏捷型、可嵌入的商业智能(BI)平台。bi商业智能分析工具和报表工具都是从数据开始,不仅包括数据的收集方式,还包括数据的存储、组织和访问方式。在一个充满了可供选择的市场中,在开始选择之前,您不妨先比较下各种软件,以及弄清自己的数据需求。
思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。
思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台
热心网友 时间:2022-04-11 19:41
在大数据被广泛运用的今天,数据已经成为企业之间非常重要的竞争点之一。而作为与数据打交道最密切的职业——数据分析师,也将迎来了黄金就业期。据艾瑞研究统计,在过去的两年中,由于各行各业新聘用了80万名数据科学家,数据科学岗位的短缺问题已大大缓解;但是今天市场上仍然有成千上万的空缺职位,其中大部分在美国和中国。
图 1:数据分析概念图
一、常用分析技能:
数据分析和数据处理本身是一个非常大的领域,有不少分析方法和技巧。下面介绍几种比较常用的数据分析技巧。
数理统计基础:
在进行数据分析之前,掌握一定的数理统计的方法及原理是有必要的。比如了解数据的类型及各种数据类型的特点。在进行数据处理的过程中,不通的数据类型适用的方法也是不一样的。因为我们进行数据分析的目的,是需要借助对数据的分析得出一定的结论,因此,我们还需要了解一些数据统计特征背后的意义。比如,在使用IBM SPSS Statistics对数据进行相关分析时,我们需要了解分析结果中的显著性指标的含义。
数据库原理以及相关知识:
在进行数据分析时,在绝大多数的情况下,需要处理的数据并不会是很少的。尤其是在大数据技术被广泛使用的今天,数据库的使用更是数据分析过程中不可缺少的一环。很多的数据分析人员做的工作都是从原始数据的整理,到各种拆分汇总,再经过分析,最后形成完整的分析报告。即使很多时候原始数据并不需要自己整理,但是具备数据库原理以及相关知识,并具有一定的代码能力的话,一定能为你的工作锦上添花。
熟练使用Excel、IBM SPSS Statistics等数据分析软件:
在进行数据分析时,我们常常需要借助电脑软件进行辅助,毕竟,人脑的数据处理能力是远远不及计算机程序的。Excel是微软公司的办公软件Microsoft
Office的组件之一。作为最常见的办公软件之一,我们使用的Excel的功能只是其中的冰山一角。Excel除了制作普通的电子表格,还有很多高级的应用场景。例如,数据*,可以将一组数据通过一个数据透视表演变出很多符合不同分析需求的表格,从而能够从多角度对数据进行分析。但是我们需要进行专业的统计分析时,就需要用到更加专业的软件加以辅助,例如IBM
SPSS Statistics。
二、常用分析软件
除了上述几种常用的分析技巧,一款好用且功能强大的分析软件也能让数据分析师事半功倍。虽然Excel常用且功能强大,但是当我们想要对大量数据进行统计分析时,Excel就会显得力不从心了。这时我们就需要使用到更加专业的统计软件——IBM
SPSS Statistics 。SPSS在数据分析领域的地位是不言而喻的。
利用 SPSS Statistics,您可以:
通过用户友好型界面,分析并更好地了解您的数据,解决复杂的业务和研究问题。
借助高级统计程序,更快地了解大型复杂的数据集,帮助确保高精度和高质量的决策。
使用扩展、Python 和 R 编程语言代码,与开源软件集成。
通过灵活的部署选项,更轻松地选择和管理您的软件。
小结
掌握数据分析技巧以及熟练使用数据分析软件,是数据分析师的两大核心竞争力。想要成为一名优秀的数据分析师,可以先从掌握常用的数据分析方法以及SPSS软件开始。
热心网友 时间:2022-04-11 21:16
多数据源支持
数据分析工具须支持连接多个数据源以进行集成分析。由于网络技术的飞速发展,产生的非结构化数据(如文本、图像、声音和网页)越来越多。除了支持关系数据库(如Oracle、SQLServer、Access、MySQL等),还需要考虑MongoDB、Redis、HBase等非关系数据库是否被支持,不同的产品对上述数据管理提供了不同程度的支持。
分析指标的多样性
为了更好地表示内容,数据分析本身需要足够详细,并挖掘出数据背后真正有价值的信息。数据分析的维度和指标因行业和用户群体而异。所以,在选择数据分析工具时,最好选择一种详尽、全面的工具来分析指标,使结果更具深度,这样才能满足用户的要求,才能借助数据分析工具挖掘出所有数据背后的真正意义。
操作便捷
一款好用的数据分析工具不仅需要具备强大的分析功能,还需要具备便捷的操作性。像Python和R语言也可以用作数据分析,但是它们用起来并不方便,没有掌握相关的IT知识很难上手。
跨部门合作
对大型企业来说,数据分析工具必须支持跨部门合作才行。数据分析工具在不同的部门有不同的需求和用途。怎样实现各部门的应用需求,怎样实现各部门与用户的共享,分析与应用结果将成为产品考虑的标准。公司规模越大,就越应该选择协同性能更好的数据分析工具。
性价比和维护成本
大多数工具(特别是企业级数据分析工具)在使用之前都需要花费一些费用。所以在选择数据分析工具时,我们需要考虑购买初期的费用和后期的维护费用。在满足企业常规功能需求的同时,也需要选择性价比更高,让用户感到更实惠的产品。
关于如何选择数据分析工具,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。