发布网友 发布时间:2022-04-20 13:55
共2个回答
热心网友 时间:2023-09-26 20:57
力的分解的概念
(1)分力:几个力共同作用产生的效果跟原来一个力作用产生的效果相同,这几个力就叫做原来那个力的分力.
(2)力的分解:求一个已知力的分力叫做力的分解.
注意:力的分解就是找几个力来代替原来的一个力,而不改变其作用效果.合力与分力间是等效替代的关系.
8、力的分解的方法
(1)力的分解法则——力的平行四边形定则.
力的分解是力的合成的逆运算,同样遵守平行四边形定则.即把已知力作为平行四边形的对角线,那么与已知力共点的两条邻边就表示已知力的两个分力的大小和方向.
注意:一个力可以分解为无数多对分力.如图1所示,要确定一个力的两个分力,一定要有定解的条件.
(2)分力有唯一定解的条件:
①已知两分力的方向(且不在同一直线上).如图2所示,要求把已知力分解成沿OA、OB方向的两个分力,可以从F的箭头处开始作OA、0B的平行线,画出力的平行四边形,即可得两分力F1、F2.
②已知一个分力的大小和方向.如图3所示,已知一个分力为F1,则先连接合力F和分力F1的箭头,即为平行四边形的另一邻边,作出平行四边形,可得另一分力F2.
9、一个已知力的实际分力的确定方法
(1)基本步骤:
①先根据力的实际作用效果确定两个实际分力的方向.
②再根据两个实际分力方向画出平行四边形.
③最后根据平行四边形知识求出两分力的大小和方向.
(2)基本方法:
①作图法:先确定一个标度,作出力F的图示,以F为对角线再按题中的已知条件,作出平行四边形,与之共点的一对邻边就表示两个分力的大小和方向,其中分力大小先用直尺量得长度,再按标度求出,方向用量角器量出.
②计算法:以已知力为对角线作出平行四边形(示意图),再按平面几何知识(如直角三角形的勾股定理、任意三角形的余弦定理、正弦定理等),求出两分力的大小和方向.
10、力的正交分解法
当物体受力较多时,常常把物体受力沿互相垂直的两个方向分解,根据=0,=0 列方程求解.
把一个力分解成两个互相垂直的分力的方法叫做力的正交分解法。设已知力为F,现在要把它分解成两个分别沿x轴和y轴的分力。
(1)如果已知力F与x轴所成的角θ为锐角,它的两个分力分别为:
Fx=Fcosθ,Fy=Fsinθ,
(2)如果已知力F与x轴所成的角θ为钝角,它的两个分力分别为:
Fx=—Fcos(180°—θ)=Fcosθ,Fy=Fsinθ,
由此可知,无论已知力F与x轴所成的角θ是锐角还是钝角,其沿x轴和y轴的分力:
Fx=Fcosθ,Fy=Fsinθ。
这个正交分力公式也可以用来计算正交分速度和正交分位移。
11.关于力的合成的多边形方法
矢量加减法的几何运算,除平行四边形定则之外,还可以用与它等价的三角形法,图甲是用平行四边形方法求合力,可以看出其中阴影部分就是一个三角形,图乙就是用三角形法求合力,在F1的头部接一个F2(F2的方向必须与原F2的方向一致),则F1的尾部和F2的头部的连线即为合力。
这种方法对两个以上力的合成特别方便,如图丙所示,点P受到F1、F2、F3和F4四个共点力的作用,求它们的合力。则可以采用将力一个接一个平移并头尾相接的办法,画出矢量多边形,最后将第一个力的尾和最后一个力的头相连接,这就是这些力的合力了,它的方向即合力的方向,合力的大小可用尺量出,这就是矢量求和的多边形方法。
望采纳
热心网友 时间:2023-09-26 20:57
就平行四边形定则!!先找出2个分力 然后就画平行四边形!2个分立为领边的对角线就是合力啊!! 就学的画平行四边形