辅助角公式是什么

发布网友 发布时间:2022-04-20 14:09

我来回答

5个回答

懂视网 时间:2022-05-15 02:38

辅助角公式是什么?让我们一起了解一下吧。

辅助角公式表达式为:asinx+bcosx=√(a?+b?)sin[x+arctan(b/a)](a>0),它是李善兰先生提出的一种高等三角函数公式。

李善兰,原名李心兰,是中国近代著名的数学、天文学、力学和植物学家,创立了二次平方根的幂级数展开式,研究各种三角函数,反三角函数和对数函数的幂级数展开式(现称“自然数幂求和公式”),这是李善兰也是19世纪中国数学界最重大的成就。

今天的分享就是这些,希望能帮助到大家。

热心网友 时间:2022-05-14 23:46

展开1全部对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=Sqrt(a^2+b^2)(acosx/Sqrt(a^2+b^2)+bsinx/Sqrt(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/Sqrt(a^2+b^2),cosφ=b/Sqrt(a^2+b^2)
∴acosx+bsinx=Sqrt(a^2+b^2)sin(x+arctan(a/b))
这就是辅助角公式.
设要证明的公式为asinA+bcosA=√(a^2+b^2)sin(A+M) (tanM=b/a)
以下是证明过程:
设asinA+bcosA=xsin(A+M)
∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)
由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x
∴x=√(a^2+b^2)
∴asinA+bcosA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=b/a
辅助角公式很重要哦

热心网友 时间:2022-05-15 01:04

对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=Sqrt(a^2+b^2)(acosx/Sqrt(a^2+b^2)+bsinx/Sqrt(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/Sqrt(a^2+b^2),cosφ=b/Sqrt(a^2+b^2)
∴acosx+bsinx=Sqrt(a^2+b^2)sin(x+arctan(a/b))
这就是辅助角公式.
设要证明的公式为asinA+bcosA=√(a^2+b^2)sin(A+M) (tanM=b/a)
以下是证明过程:
设asinA+bcosA=xsin(A+M)
∴asinA+bcosA=x((a/x)sinA+(b/x)cosA)
由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x
∴x=√(a^2+b^2)
∴asinA+bcosA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=b/a
辅助角公式很重要哦

希望采纳,谢谢!

热心网友 时间:2022-05-15 02:38

付费内容限时免费查看回答在所有三角方程中,sin x=a,cos x=a,tan x=a,cot x=a是最基本,最简单的方程,其它方程通过变形可化为一个或几个这样最简单三角方程,因此这四个方程的解法是解方程的基础,解一般三角方程时,根据不同变形,有以下四类化法: ① 可化为同角同函数方程 ② 一边为0而另一边可分解因式的方程 ③ 关于sin x和cos x的齐次方程,应注意齐次方程中的常数项为零,如果常数项不为零,如: 就不是齐次方程。 ④ asin x+bcos x=c型方程以上四种类型的方程是常见的,学生解起来方法也不难掌握。

热心网友 时间:2022-05-15 04:30

对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2)
  ∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(b/a)) 这里申明b必须为正!
  这就是辅助角公式。
证明过程
  设acosA+bsinA=xsin(A+M)
  ∴acosA+bsinA=x((a/x)cosA+(b/x)sinA)
  由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x
  ∴x=√(a^2+b^2)
  ∴acosA+bsinA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=b/a (a,b)由其所在象限确定。

参考资料:http://ke.baidu.com/view/63.htm

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com