∫sin(lnx)dx

发布网友 发布时间:2022-04-24 08:44

我来回答

4个回答

热心网友 时间:2022-06-18 03:27

积分:sin(lnx)dx (分部积分)
=xsin(lnx)-积分:xcos(lnx)/xdx
=xsin(lnx)-积分:cos(lnx)dx (再分部积分)
=xsin(lnx)-xcos(lnx)-积分:xsin(lnx)/xdx
=xsin(lnx)-xcos(lnx)-积分:sin(lnx)dx

设原来的积分为Q
则有:
Q=xsin(lnx)-xcos(lnx)-Q
所以
2Q=xsin(lnx)-xcos(lnx)
所以
Q=1/2[xsin(lnx)-xcos(lnx)]

所以最后的积分答案是:
1/2[xsin(lnx)-xcos(lnx)]+C
(C为积分常数)

热心网友 时间:2022-06-18 03:27

分部积分
∫sin(lnx)dx
=-∫xdcos(lnx)
=-xcos(lnx)+∫cos(lnx)dx
=-xcos(lnx)+∫xdsin(lnx)
=-xcos(lnx)+xsin(lnx)-∫sin(lnx)dx

所以2∫sin(lnx)dx=xsin(lnx)-xcos(lnx)
∫sin(lnx)dx=(xsin(lnx)-xcos(lnx))/2

热心网友 时间:2022-06-18 03:28

令lnx=t x=e^t
∫sin(lnx)dx=∫sintde^t=∫sinte^tdt
=(e^t)sint-∫e^tdsint
=e^tsint-∫costde^t
=e^tsint-e^tcost+∫e^tdcost
=e^tsint-e^tcost-∫e^tsintdt
2∫sinte^tdt=e^t(sint-cost)
∫sinte^tdt=e^t(sint-cost)/2
代入t=lnx

热心网友 时间:2022-06-18 03:28

令lnx=t,则x=e^t,
∫sin(lnx)dx
=∫sintde^t
=e^t×sint-∫e^tdsint
=e^t×sint-∫e^t×costdt
=e^t×sint-∫costde^t
=e^t×sint-e^t×cost+∫e^tdcost
=e^t×sint-e^t×cost-∫e^t×sintdt
所以原式=(e^t×sint-e^t×cost)/2
=x×(sinlnx-coslnx)/2

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com