u检验与t检验的区别是什么?

发布网友 发布时间:2022-04-24 11:40

我来回答

2个回答

热心网友 时间:2023-10-11 12:15

u检验与t检验的区别是:作用不同、适用条件不同以及应用不同。

一、作用不同

1、t检验:主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

2、u检验:用来评估两个的顺序数据样本是否来自同一个总体的非参数检验。

二、适用条件不同

u检验适用于小样本数据,并且不要求数据满足正态分布。但是作为代价,当数据为正态分布时,t检验比u检验更具统计效能(即,当假设的差异确实存在时,t检验更容易发现这些差异。

三、应用不同

1、t检验:样本量较小σ未知的正态分布资料,比较两个平均数的差异是否显著。

2、u检验:应用领域于数理化学。

t检验的适用条件:

1、已知一个总体均数;

2、可得到一个样本均数及该样本标准差;

3、样本来自正态或近似正态总体。

以上内容参考 百度百科-u检验、百度百科-t检验

热心网友 时间:2023-10-11 12:16

u检验是已知一个正态总体的方差б2,用给定的一组样本x1、x2,…,xn,检验总体均值μ是否等于已知常数μ0的统计检验法。其检验步骤如下:①提出统计假设H0: μ=μ0;②计算样本均值及u;③按给定的显著水平 ,查正态分布表求值;④进行统计推断。 u检验是在大样本(n>30)的情况下,检验随机变量的数学期望是否等于某一已知值的一种假设检验方法。设X1,X2,……,Xn是正态随机变量X的一个样本,总体方差为σ2,假设X的数学期望MX等于某个已知值m0。根据统计理论,当假设成立时,统计量如右图。 由预先给定的信度α,查正态分布表,得uα。若计算的│u│<uα,则接受假设,即X的数学期望MX与m0无显著差异;若│u│≥uα,则拒绝假设,认为X的数学期望与m0有显著差异。两个正态随机变量在方差已知的条件下,u—检验法可用来检验它们的数学期望是否有显著差异。 T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 简介 t检验是对各回归系数的显著性所进行的检验,(--这个太不全面了,这是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等) 目的:比较样本均数 所代表的未知总体均数μ和已知总体均数μ0。 计算公式: t统计量: 自由度:v=n - 1适用条件 (1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本来自正态或近似正态总体。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com