发布网友 发布时间:2022-04-24 09:23
共2个回答
热心网友 时间:2022-05-15 02:20
展开3全部
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:
过程:
1.设直线l的方程为Ax+By+Cz+D=0 显然它与直线Ax+By+Cz=(A,B,C)(x,y,z)=0平行. 而后者从表达式可以看出它和向量(A,B,C)垂直.
2.考虑直线外一点P和直线上一点Q,则有向量PQ,如果它垂直于直线l,那么PQ的长度就是点到直线的距离。如果它不垂直于直线l,那么设P到直线l的垂足为R,由直角三角形的关系,PQcost=PR,cost是PQ与PR夹角的余弦,而PR与(A,B,C)都垂直于l,因此它俩平行。于是,夹角t可由PQ和(A,B,C)得出。
3.现在,P已知,Q可任取,(A,B,C)已知,故t已知。于是PR的长度已知,于是点到直线的距离已知。将以上过程用坐标写出来就得到了点到直线的距离公式了。
热心网友 时间:2022-05-15 03:38
Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)。
点到直线的距离公式
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:
d=│AXo+BYo+C│/√(A²+B²)
公式描述:
公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。
连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。
扩展资料:
空间点到直线距离
点M(1,2,3)到直线{x+y-z=1,2x+z=3}的距离是____?
由两平面可得z=3-2x,y=4-3x。因此直线方程为:x/(-1)=(y-4)/3=(z-3)/2,
直线的方向向量为(-1,3,2) 。可设直线上一点N(-t,3t+4,2t+3),MN向量为(-t-1,3t+2,2t)
若MN垂直于直线,则(-1,3,2)*(-t-1,3t+2,2t)=0。可解得t=-1/2
MN的模长sqr(6)/2即为所求。