发布网友 发布时间:2022-04-22 00:59
共1个回答
热心网友 时间:2024-02-02 23:22
1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))\x0d\x0a 分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。\x0d\x0a 2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))\x0d\x0a 例:算法:\x0d\x0a for(i=1;i<=n;++i)\x0d\x0a {\x0d\x0a for(j=1;j<=n;++j)\x0d\x0a {\x0d\x0a c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次\x0d\x0a for(k=1;k<=n;++k)\x0d\x0a c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次\x0d\x0a }\x0d\x0a }\x0d\x0a 则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级\x0d\x0a 则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c\x0d\x0a 则该算法的 时间复杂度:T(n)=O(n的三次方)