如何配置一台深度学习主机

发布网友 发布时间:2022-04-22 00:17

我来回答

2个回答

热心网友 时间:2022-06-30 09:04

搞AI,谁又能没有“GPU之惑”?下面列出了一些适合进行深度学习模型训练的GPU,并将它们进行了横向比较,一起来看看吧!

CPU与GPU对比

CPU是一个有多种功能的优秀领导者。它的优点在于调度、管理、协调能力强,计算能力则位于其次。而GPU相当于一个接受CPU调度的“拥有大量计算能力”的员工。

下图是处理器内部结构图:

DRAM即动态随机存取存储器,是常见的系统内存。

Cache存储器:电脑中作为高速缓冲存储器,是位于CPU和主存储器DRAM之间,规模较小,但速度很高的存储器。

算术逻辑单元ALU是能实现多组算术运算和逻辑运算的组合逻辑电路。

当需要对大数据bigdata做同样的事情时,GPU更合适,当需要对同一数据做很多事情时,CPU正好合适。

GPU能做什么?关于图形方面的以及大型矩阵运算,如机器学习算法等方面,GPU就能大显身手。

简而言之,CPU擅长统领全局等复杂操作,GPU擅长对大数据进行简单重复操作。CPU是从事复杂脑力劳动的教授,而GPU是进行大量并行计算的体力劳动者。

深度学习是模拟人脑神经系统而建立的数学网络模型,这个模型的最大特点是,需要大数据来训练。因此,对电脑处理器的要求,就是需要大量的并行的重复计算,GPU正好有这个专长,时势造英雄,因此,GPU就出山担当重任了。


太长不看版
截至2020年2月,以下GPU可以训练所有当今语言和图像模型:

热心网友 时间:2022-06-30 09:04

这不配置出来的,是需要研发与创造的。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com