发布网友 发布时间:2024-10-09 00:34
共1个回答
热心网友 时间:9分钟前
(1)证明:如图(1),
∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B,
∵AF平分∠CAB,
∴∠CAE=∠BAF,
∴∠ACD+∠CAE=∠B+∠BAF,
∴∠CEF=∠CFE,
∴CE=CF.
(2)解:∵S△ACB=24,AD=14AB,CF=13CB,
∴S△ACD=S△ADE+S△ACE=14×24=6①,
S△ACF=S△CEF+S△ACE=13×24=8②,
∴②-①得:S△CEF-S△ADE=8-6=2,
故答案为:2.
(3)BE′=CF,
证明:如图(2),过F作FH⊥AB于H,
∵CD⊥AB,
∴CD∥FH,
∴∠ECE′=∠HFB,
∵△ADE沿AB平移到△A′D′E′,
∴DE=D′E′,EE′=DD′,
∴四边形EDD′E′是平行四边形,
∴EE′∥AB,
∵∠CDB=90°,
∴∠CEE′=∠CDB=90°=∠FHB,
∵AF平分∠CAB,∠ACF=90°,FH⊥AB,
∴CF=FH,
∵CF=CE,
∴CE=FH,
在△CEE′和△FHB中
∠CEE′=FHBCE=FH∠ECE′=∠HFB
∴△CEE′≌△FHB(ASA),
∴CE′=BF,
∴CE′-FE′=BF-E′F,
即BE′=CF.