发布网友 发布时间:2024-10-23 18:53
共1个回答
热心网友 时间:2024-11-14 02:38
BERT,全称为双向Transformer编码器表示,其源码主要包含以下几个关键步骤:
首先,环境准备至关重要,通过create_pretraining_data.py进行训练样本的生成。主体函数对原始文本进行切词处理,具体在tokenization.py中的create_training_instances()方法中实现。接着,通过调用write_instance_to_example_files()将处理后的样本保存。
模型构建阶段,modeling.py中的核心是BertConfig类和BertModel类。通过初始化这两个类,可以构建起BERT模型。值得注意的是,模型结构中包含Dropout层,但注意力层的dropout概率有所不同。
优化器的构建在optimization.py中完成,训练模型则通过run_pretraining.py中的model_fn_builder函数实现。同时,模型还包含处理Next Sentence Prediction (NSP)任务的loss函数,即get_next_sentence_output。
后续的fine-tuning环节,extract_features.py负责生成句子向量表示,而run_classifier.py和run_classifier_with_tfhub.py用于分类任务。至于问答任务,run_squad.py提供了相应的解决方案。