如何用三角函数或者函数图像证明1+1=2?(过程要详细,喷子绕路)

发布网友 发布时间:2024-10-23 20:43

我来回答

1个回答

热心网友 时间:2024-11-06 07:11

首先分割的概念:假设有理数分为A,B两类,每类非空,且每一个有理数必属且仅属于一类。属于下类A的每一个数小于属于上类B的每一个数,这样的分类法称分割。
若A类有最大数,或B类有最小数,则分割A/B确定一个有理数。否则确定一个无理数。
有了这个概念,我们看:
做出确定1的分割:一切有理数b>1归入B类,一切有理数a<=0和正有理数a<1归入A类
我们有两个1,所以分割后将另一个的分割记作A'/B'
根据加法定义:满足a+a'<c<b+b'
(对任意a属于A,b属于B.....)
的唯一实数c就是1+1
因此我们须证恒有 (a+a')^2 < 4 和 (b+b')^2>4
若a+a' > 0 (小于则显然成立)
则a与a'至少一个为正,从而a^2a'^2 < 1
知aa' < 1
从而 (a+a')^2 = a^2 +a'^2+2aa' < 1+1+2 = 4
同理可得 (b+b')^2 > 4
于是 a+a'<2<b+b'
这个唯一的数就是2
于是可知1+1=2

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com