椭圆面积最小值是多少?

发布网友

我来回答

1个回答

热心网友

椭圆面积S=πab,所以S最小值为π*2分之3倍根号3。

设点坐标,利用均值不等式求解。设椭圆上任一点P(acosθ,bsinθ),圆心为E(1,0)的圆内切于椭圆,即求椭圆上任一点P到点E距离最小值为1。

两点距离公式求得PE^2=(a^2-b^2)cosθ^2-2acosθ+b^2+1=y,二次函数方法求得y最小值,由y最小值=1整理可得b^4-a^2b^2+a^2=0,利用三项均值不等式得ab最小值为2分之3倍根号3。

椭圆简介

在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。

椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。

椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com