发布网友 发布时间:2022-04-22 05:20
共1个回答
热心网友 时间:2024-02-13 21:46
猎鹿博弈又称猎鹿模型(Stag Hunt Model)、猎人的帕累托效率,源自启蒙思想家卢梭的著作《论人类不平等的起源和基础》中的一个故事。
古代的村庄有两个猎人。当地的猎物主要有两种:鹿和兔子。如果一个猎人单兵优作战,一天最多只能打到4只兔子。只有两个一起去才能猎获一只鹿。从填饱肚子的角度来说,4只兔子能保证一个人4天不挨饿,而一只鹿却能让两个人吃上10天。这样两个人的行为决策可以形成两个博弈结局:分别打兔子,每人得4;合作,每人得10。这样猎鹿博弈有两个纳什均衡点,那就是:要么分别打兔子,每人吃饱4天;要么合作,每人吃饱10天。
这里不妨假设两个猎人叫A和B。我们引入一种矩阵式的对两人博弈的描述方法,见下图:
在这个矩阵图中,每一个格子都代表一种博弈的结果。具体说来,在左上角的格子表示,猎人A和B都抓兔子,结果是猎人A和B都能吃饱4天;在左下角的格子表示,猎人A抓兔子,猎人B打鹿,结果是猎人A可以吃饱4天,B则一无所获;在右上角,猎人A打鹿,猎人B抓兔子,结果是猎人A一无所获,猎人B可以吃饱4天;在右下角,猎人A和B合作抓捕鹿,结果是两人平分猎物,都可以吃饱10天。 显然,两个人合作猎鹿的好处比各自打兔子的好处要大得多,但是要求两个猎人的能力和贡献相等。如果一个猎人的能力强、贡献大,他就会要求得到较大的一份,这可能会让另一个猎人觉得利益受损而不愿意合作。“合则双赢”的道理大家都懂,在实际中很难合作的原因就在于此。合作要求博弈双方学会与对手共赢,充分照顾到合作者的利益。